Skip to main content

Advertisement

Log in

An Integrative Single-cell Transcriptomic Atlas of the Post-natal Mouse Mammary Gland Allows Discovery of New Developmental Trajectories in the Luminal Compartment

  • Original Paper
  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The mammary gland is a highly dynamic organ which undergoes periods of expansion, differentiation and cell death in each reproductive cycle. Partly because of the dynamic nature of the gland, mammary epithelial cells (MECs) are extraordinarily heterogeneous. Single cell RNA-seq (scRNA-seq) analyses have contributed to understand the cellular and transcriptional heterogeneity of this complex tissue. Here, we integrate scRNA-seq data from three foundational reports that have explored the mammary gland cell populations throughout development at single-cell level using 10× Chromium Drop-Seq. We center our analysis on post-natal development of the mammary gland, from puberty to post-involution. The new integrated study corresponds to RNA sequences from 53,686 individual cells, which greatly outnumbers the three initial data sets. The large volume of information provides new insights, as a better resolution of the previously detected Procr+ stem-like cell subpopulation or the identification of a novel group of MECs expressing immune-like markers. Moreover, here we present new pseudo-temporal trajectories of MEC populations at two resolution levels, that is either considering all mammary cell subtypes or focusing specifically on the luminal lineages. Interestingly, the luminal-restricted analysis reveals distinct expression patterns of various genes that encode milk proteins, suggesting specific and non-redundant roles for each of them. In summary, our data show that the application of bioinformatic tools to integrate multiple scRNA-seq data-sets helps to describe and interpret the high level of plasticity involved in gene expression regulation throughout mammary gland post-natal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inman JL, et al. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development. 2015;142(6):1028–42.

    Article  CAS  PubMed  Google Scholar 

  2. Lee E, et al. Plasticity and Potency of Mammary Stem Cell Subsets During Mammary Gland Development. Int J Mol Sci, 2019;20(9).

  3. Watson CJ, Khaled WT. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development. 2008;135(6):995–1003.

    Article  CAS  PubMed  Google Scholar 

  4. Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev. 2014;28(11):1143–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu NY, et al. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol Rev. 2020;100(2):489–523.

    Article  CAS  PubMed  Google Scholar 

  6. Kendrick H, et al. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics. 2008;9:591.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marcotte R, et al. Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance. Cell. 2016;164(1–2):293–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butler A, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trapnell C, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pal B, et al. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat Commun. 2017;8(1):1627.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giraddi RR, et al. Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. Cell Rep. 2018;24(6):1653-1666.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bach K, et al. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat Commun. 2017;8(1):2128.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Macosko EZ, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015;161(5):1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao C, et al. Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature. 2019;571(7765):349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartek J, Bartkova J, Taylor-Papadimitriou J. Keratin 19 expression in the adult and developing human mammary gland. Histochem J. 1990;22(10):537–44.

    Article  CAS  PubMed  Google Scholar 

  16. Gusterson BA, et al. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res. 2005;7(4):143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang D, et al. Identification of multipotent mammary stem cells by protein C receptor expression. Nature. 2015;517(7532):81–4.

    Article  CAS  PubMed  Google Scholar 

  18. Navarro R, et al. Immune Regulation by Pericytes: Modulating Innate and Adaptive Immunity. Front Immunol. 2016;7:480.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eirew P, et al. Aldehyde dehydrogenase activity is a biomarker of primitive normal human mammary luminal cells. Stem Cells. 2012;30(2):344–8.

    Article  CAS  PubMed  Google Scholar 

  20. Shyamala G, et al. Cellular expression of estrogen and progesterone receptors in mammary glands: regulation by hormones, development and aging. J Steroid Biochem Mol Biol. 2002;80(2):137–48.

    Article  CAS  PubMed  Google Scholar 

  21. Brisken C, Ataca D. Endocrine hormones and local signals during the development of the mouse mammary gland. Wiley Interdiscip Rev Dev Biol. 2015;4(3):181–95.

    Article  CAS  PubMed  Google Scholar 

  22. Robinson GW, et al. Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development. 1995;121(7):2079–90.

    Article  CAS  PubMed  Google Scholar 

  23. Kimura T, et al. Expression and immunolocalization of the oxytocin receptor in human lactating and non-lactating mammary glands. Hum Reprod. 1998;13(9):2645–53.

    Article  CAS  PubMed  Google Scholar 

  24. Weymouth N, Shi Z, Rockey DC. Smooth muscle α actin is specifically required for the maintenance of lactation. Dev Biol. 2012;363(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  25. Danopoulos S, et al. Human lung branching morphogenesis is orchestrated by the spatiotemporal distribution of ACTA2, SOX2, and SOX9. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L144–9.

    Article  PubMed  Google Scholar 

  26. Ewald AJ, et al. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell. 2008;14(4):570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rudland PS, Hughes CM. Immunocytochemical identification of cell types in human mammary gland: variations in cellular markers are dependent on glandular topography and differentiation. J Histochem Cytochem. 1989;37(7):1087–100.

    Article  CAS  PubMed  Google Scholar 

  28. Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A. 2007;104(13):5455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajaram RD, et al. Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk. EMBO J. 2015;34(5):641–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang CC, et al. CD164 regulates proliferation, progression, and invasion of human glioblastoma cells. Oncotarget. 2019;10(21):2041–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kanaya N, et al. Single-cell RNA-sequencing analysis of estrogen- and endocrine-disrupting chemical-induced reorganization of mouse mammary gland. Commun Biol. 2019;2:406.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget. 2018;9(28):20179–212.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Russo J, et al. Pregnancy-induced chromatin remodeling in the breast of postmenopausal women. Int J Cancer. 2012;131(5):1059–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mendoza-Villanueva D, et al. The C/EBPδ protein is stabilized by estrogen receptor α activity, inhibits SNAI2 expression and associates with good prognosis in breast cancer. Oncogene. 2016;35(48):6166–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagner KU, et al. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129(6):1377–86.

    Article  CAS  PubMed  Google Scholar 

  36. Howlin J, et al. CITED1 homozygous null mice display aberrant pubertal mammary ductal morphogenesis. Oncogene. 2006;25(10):1532–42.

    Article  CAS  PubMed  Google Scholar 

  37. McBryan J, et al. ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene. 2007;26(44):6406–19.

    Article  CAS  PubMed  Google Scholar 

  38. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894–904.

    Article  CAS  PubMed  Google Scholar 

  39. Chen B, et al. GPx3 promoter hypermethylation is a frequent event in human cancer and is associated with tumorigenesis and chemotherapy response. Cancer Lett. 2011;309(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng X, et al. Quantitative proteome analysis of bovine mammary gland reveals protein dynamic changes involved in peak and late lactation stages. Biochem Biophys Res Commun. 2017;494(1–2):292–7.

    Article  CAS  PubMed  Google Scholar 

  41. Chang Y, et al. Secretion of pleiotrophin stimulates breast cancer progression through remodeling of the tumor microenvironment. Proc Natl Acad Sci U S A. 2007;104(26):10888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hubbard NE, et al. Transgenic mammary epithelial osteopontin (spp1) expression induces proliferation and alveologenesis. Genes Cancer. 2013;4(5–6):201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharp JA, Lefèvre C, Nicholas KR. Lack of functional alpha-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution. BMC Biol. 2008;6:48.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jin D, El-Tanani M, Campbell FC. Identification of apolipoprotein D as a novel inhibitor of osteopontin-induced neoplastic transformation. Int J Oncol. 2006;29(6):1591–9.

    CAS  PubMed  Google Scholar 

  45. Franco B, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature. 1991;353(6344):529–36.

    Article  CAS  PubMed  Google Scholar 

  46. Kho Y, et al. WDNM1 is associated with differentiation and apoptosis of mammary epithelial cells. Anim Biotechnol. 2008;19(2):89–103.

    Article  CAS  PubMed  Google Scholar 

  47. Nishimura T, Kohmoto K. Regulation of glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) gene in the mouse mammary gland differs from that of casein genes. Comp Biochem Physiol B Biochem Mol Biol. 2001;129(1):149–56.

    Article  CAS  PubMed  Google Scholar 

  48. LaMarca HL, Rosen JM. Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage. Breast Cancer Res. 2007;9(4):304.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sternlicht MD, et al. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development. 2005;132(17):3923–33.

    Article  CAS  PubMed  Google Scholar 

  50. Sternlicht MD, Sunnarborg SW. The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J Mammary Gland Biol Neoplasia. 2008;13(2):181–94.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Camarillo IG, et al. Prolactin receptor expression in the epithelia and stroma of the rat mammary gland. J Endocrinol. 2001;171(1):85–95.

    Article  CAS  PubMed  Google Scholar 

  52. Domenici G, et al. A Sox2-Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells. Oncogene. 2019;38(17):3151–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Forbes A, et al. The tetraspan protein EMP2 regulates expression of caveolin-1. J Biol Chem. 2007;282(36):26542–51.

    Article  CAS  PubMed  Google Scholar 

  54. Park DS, et al. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell. 2002;13(10):3416–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Watt AP, et al. WFDC2 is differentially expressed in the mammary gland of the tammar wallaby and provides immune protection to the mammary gland and the developing pouch young. Dev Comp Immunol. 2012;36(3):584–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martín E. García Solá or Edith C. Kordon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Solá, M., Stedile, M., Beckerman, I. et al. An Integrative Single-cell Transcriptomic Atlas of the Post-natal Mouse Mammary Gland Allows Discovery of New Developmental Trajectories in the Luminal Compartment. J Mammary Gland Biol Neoplasia 26, 29–42 (2021). https://doi.org/10.1007/s10911-021-09488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-021-09488-1

Keywords

Navigation