Skip to main content

Advertisement

Log in

Studying Lymphatic Metastasis in Breast Cancer: Current Models, Strategies, and Clinical Perspectives

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Breast cancer is the most commonly diagnosed cancer in women and the second most common cause of cancer-related deaths in the United States. Although early detection has significantly decreased breast cancer mortality, patients diagnosed with distant metastasis still have a very poor prognosis. The most common site that breast cancer spreads to are local lymph nodes. Therefore, the presence of lymph node metastasis remains one of most important prognostic factors in breast cancer patients. Given its significant clinical implications, increased efforts have been dedicated to better understand the molecular mechanism governing lymph node metastasis in breast cancer. The identification of lymphatic-specific biomarkers, including podoplanin and LYVE-1, has propelled the field of lymphatic metastasis forward. In addition, several animal models such as cell line-derived xenografts, patient-derived xenografts, and spontaneous tumor models have been developed to recreate the process of lymphatic metastasis. Moreover, the incorporation of various -omic platforms have provided further insight into the genetic drivers facilitating lymphatic metastasis, as well as potential biomarkers and therapeutic targets. Here, we highlight various models of lymphatic metastasis, their potential pitfalls, and other tools available to study lymphatic metastasis including imaging modalities and -omic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halsted ws. the results of operations for the cure of cancer of the breast performed at the johns hopkins hospital from june, 1889, To January, 1894. Ann Surg. Ovid Technologies (Wolters Kluwer Health); 1894;20:497–555.

  2. Adair F, Berg J, Joubert L, Robbins GF. Long-term Followup of Breast Cancer Patients: The 30-year Report. Cancer. Cancer. 1974;33(4):1145–50.

    CAS  PubMed  Google Scholar 

  3. Ries LG, Young JL, Keel GE, Eisner MP, Lin YDHM. SEER survival monograph Cancer survival among adults: U.S. SEER program, 1988-2001 patient and tumor characteristics. Natl Cancer institute, SEER program. NIH Pub. 1988;7:193–202.

    Google Scholar 

  4. Rahman M, Mohammed S. Breast cancer metastasis and the lymphatic system (review). Oncol Lett. 2015;10:1233–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ran S, Volk L, Hall K, Flister MJ. Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology. 2010;17(4):229–51.

    PubMed  Google Scholar 

  6. Laurent TC, Fraser JRE. Hyaluronan 1. FASEB J Wiley. 1992;6:2397–404.

    CAS  Google Scholar 

  7. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous Chemotaxis as a mechanism of tumor cell homing to Lymphatics via interstitial flow and Autocrine CCR7 signaling. Cancer Cell. 2007;11:526–38.

    CAS  PubMed  Google Scholar 

  8. Kang H, Watkins G, Parr C, Douglas-Jones A, Mansel RE, Jiang WG. Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res. 2005;7:402–10.

    Google Scholar 

  9. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    PubMed  Google Scholar 

  10. Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res. 2004;64:4302–8.

    CAS  PubMed  Google Scholar 

  11. Cabioglu N, Yazici MS, Arun B, Broglio KR, Hortobagyi GN, Price JE, et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res. 2005;11:5686–93.

    CAS  PubMed  Google Scholar 

  12. Kato M, Kitayama J, Kazama S, Nagawa H. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res. 2003;5:R144–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 2001;20:672–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7:192–8.

    CAS  PubMed  Google Scholar 

  15. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med [Internet]. 2001;7:186–91 Available from: http://medicine.nature.com.

    CAS  Google Scholar 

  16. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Ylä-Herttuala S, Alitalo K. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 2001;61:1786–90.

    CAS  PubMed  Google Scholar 

  17. Zhang S, Yi S, Zhang D, Gong M, Cai Y, Zou L. Intratumoral and peritumoral lymphatic vessel density both correlate with lymph node metastasis in breast cancer. Sci Rep Nat Publ Group. 2017;7:40364.

    CAS  Google Scholar 

  18. Jain RK. Intratumoral lymphatic vessels: a case of mistaken identity or malfunction? CancerSpectrum Knowl Environ. 2002;94:417–21.

    Google Scholar 

  19. Kakeji Y, Koga T, Sumiyoshi Y, Shibahara K, Oda S, Maehara Y, et al. Clinical significance of vascular endothelial growth factor expression in gastric cancer. J Exp Clin Cancer Res. 2002;21:125–9.

    CAS  PubMed  Google Scholar 

  20. Mohammed RAA, Green A, El-Shikh S, Paish EC, Ellis IO, Martin SG. Prognostic significance of vascular endothelial cell growth factors -a, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer [Internet]. 2007;96:1092–100 Available from: www.bjcancer.com.

    CAS  Google Scholar 

  21. Gu Y, Qi X, Guo S. Lymphangiogenesis induced by VEGF-C and VEGF-D promotes metastasis and a poor outcome in breast carcinoma: a retrospective study of 61 cases. Clin Exp Metastasis. 2008;25:717–25.

    CAS  PubMed  Google Scholar 

  22. Zuckerman NS, Yu H, Simons DL, Bhattacharya N, Carcamo-Cavazos V, Yan N, et al. Altered local and systemic immune profiles underlie lymph node metastasis in breast cancer patients. Int J Cancer. 2013;132:2537–47.

    CAS  PubMed  Google Scholar 

  23. Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med. 2005;2:0904–19.

    CAS  Google Scholar 

  24. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest. 2005;115:2363–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest Am Soc Clin Investig. 2004;113:1040–50.

    CAS  Google Scholar 

  26. Alishekevitz D, Gingis-Velitski S, Kaidar-Person O, Gutter-Kapon L, Scherer SD, Raviv Z, et al. Macrophage-induced Lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep. 2016;17:1344–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamagata Y, Tomioka H, Sakamoto K, Sato K, Harada H, Ikeda T, et al. CD163-positive macrophages within the tumor Stroma are associated with Lymphangiogenesis and lymph node metastasis in Oral squamous cell carcinoma. J Oral Maxillofac Surg. 2017;75:2144–53.

    PubMed  Google Scholar 

  28. Maruyama K, Nakazawa T, Cursiefen C, Maruyama Y, Van Rooijen N, D’Amore PA, et al. The maintenance of lymphatic vessels in the cornea is dependent on the presence of macrophages. Invest Ophthalmol Vis Sci. 2012;53:3145–53.

    CAS  PubMed  Google Scholar 

  29. Volk-Draper L, Patel R, Bhattarai N, Yang J, Wilber A, DeNardo D, et al. Myeloid-derived lymphatic endothelial cell progenitors significantly contribute to lymphatic metastasis in clinical breast Cancer. Am J Pathol. 2019;189:2269–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Qing W, Fang WY, Ye L, Shen LY, Zhang XF, Fei XC, et al. Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma. Thyroid [Internet]. 2012;22:905–10 Available from: www.liebertpub.com.

    CAS  Google Scholar 

  31. Ran S, Montgomery KE. Macrophage-Mediated Lymphangiogenesis: The Emerging Role of Macrophages as Lymphatic Endothelial Progenitors. Cancers (Basel). 2012;4:618–57.

    CAS  Google Scholar 

  32. Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell Cell Press. 2007;131:463–75.

    CAS  Google Scholar 

  33. Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med. 2009;206:1089–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jeon BH, Jang C, Han J, Kataru RP, Piao L, Jung K, et al. Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res. 2008;68:1100–9.

    CAS  PubMed  Google Scholar 

  35. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res Academic Press. 2011;167:e211–9.

    Google Scholar 

  36. Zhang B, Yao G, Zhang Y, Gao J, Yang B, Rao Z, et al. M2-polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma. Clinics. 2011;66:1879–86.

    PubMed  PubMed Central  Google Scholar 

  37. Harrell MI, Iritani BM, Ruddell A. Tumor-Induced Sentinel Lymph Node Lymphangiogenesis and Increased Lymph Flow Precede Melanoma Metastasis. Am J Pathol [Internet]. American Society for Investigative Pathology Inc.; 2007 [cited 2020 Sep 4];170:774–786. Available from: https://linkinghub.elsevier.com/retrieve/pii/S000294401060898X

  38. Ruddell A, Mezquita P, Brandvold KA, Farr A, Iritani BM. B Lymphocyte-Specific c-Myc Expression Stimulates Early and Functional Expansion of the Vasculature and Lymphatics during Lymphomagenesis. Am J Pathol. 2003;163(6):2233–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Angeli V, Ginhoux F, Llodrà J, Quemeneur L, Frenette PS, Skobe M, et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity Cell Press. 2006;24:203–15.

    CAS  Google Scholar 

  40. Gu Y, Liu Y, Fu L, Zhai L, Zhu J, Han Y, et al. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG. Nat Med Nature Publishing Group. 2019;25:312–22.

    CAS  Google Scholar 

  41. Wang J, Jia Y, Wang N, Zhang X, Tan B, Zhang G, et al. The clinical significance of tumor-infiltrating neutrophils and neutrophil-to-CD8+ lymphocyte ratio in patients with resectable esophageal squamous cell carcinoma. J Transl Med [Internet]. BioMed Central; 2014;12:1–10. Available from: https://doi.org/10.1186/1479-5876-12-7

  42. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature [Internet]. Nature Publishing Group. 2015;522:345–8 Available from: https://www.nature.com/articles/nature14282.

    CAS  Google Scholar 

  43. Núñez NG, Tosello Boari J, Ramos RN, Richer W, Cagnard N, Anderfuhren CD, et al. Tumor invasion in draining lymph nodes is associated with Treg accumulation in breast cancer patients. Nat Commun [Internet]. Nature Res. 2020;11:1–15. https://doi.org/10.1038/s41467-020-17046-2.

    Article  CAS  Google Scholar 

  44. Sheu BC, Kuo WH, Chen RJ, Huang SC, Chang KJ, Chow SN. Clinical significance of tumor-infiltrating lymphocytes in neoplastic progression and lymph node metastasis of human breast cancer. Breast. 2008;17:604–10.

    PubMed  Google Scholar 

  45. Gadalla R, Hassan H, Abdelaziz Ibrahim S, Salah Abdullah M, Gaballah A, Greve B, et al. Tumor microenvironmental plasmacytoid dendritic cells contribute to breast cancer lymph node metastasis via CXCR4/SDF-1 axis. Breast Cancer Res Treat [Internet]. 2019;174: 679–691. Available from: https://doi.org/10.1007/s10549-019-05129-8

  46. Messaoudene M, Fregni G, Fourmentraux-Neves E, Chanal J, Maubec E, Mazouz-Dorval S, et al. Mature cytotoxic CD56bright/CD16+ natural killer cells can infiltrate lymph nodes adjacent to metastatic melanoma. Cancer Res [Internet]. 2014;74:81–92 American Association for Cancer Research. Available from: http://cancerres.aacrjournals.org/.

    CAS  Google Scholar 

  47. Kessler DJ, Mickel RA, Lichtenstein A. Depressed Natural Killer Cell Activity in Cervical Lymph Nodes Containing Focal Metastatic Squamous Cell Carcinoma. Arch Otolaryngol Neck Surg [Internet] Am Med Assoc. 1988;114:313–8 Available from: https://jamanetwork.com/.

    CAS  Google Scholar 

  48. Liu K, Newbury PA, Glicksberg BS, Zeng WZD, Paithankar S, Andrechek ER, et al. Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data. Nat Commun. 2019;10:1–12.

    Google Scholar 

  49. Puchalapalli M, Zeng X, Mu L, Anderson A, Glickman LH, Zhang M, et al.. NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (nude) mice. PLoS One Pub Lib Sci. 2016;11.

  50. Iorns E, Drews-Elger K, Ward TM, Dean S, Clarke J, Berry D, et al. A New Mouse Model for the Study of Human Breast Cancer Metastasis. PLoS One Public Libr Sci. 2012;7:e47995.

    CAS  Google Scholar 

  51. Vantyghem SA, Allan AL, Postenka CO, Al-Katib W, Keeney M, Tuck AB, et al. A new model for lymphatic metastasis: development of a variant of the MDA-MB-468 human breast cancer cell line that aggressively metastasizes to lymph nodes. Clin Exp Metastasis. 2005;22:351–61.

    CAS  PubMed  Google Scholar 

  52. Harrell JC, Dye WW, Allred DC, Jedlicka P, Spoelstra NS, Sartorius CA, et al. Estrogen Receptor Positive Breast Cancer Metastasis: Altered Hormonal Sensitivity and Tumor Aggressiveness in Lymphatic Vessels and Lymph Nodes. Cancer Res [Internet]. 2006;66:9308–23 Available from: www.aacrjournals.org.

    CAS  Google Scholar 

  53. Lee E, Pandey NB, Popel AS. Pre-treatment of mice with tumor-conditioned media accelerates metastasis to lymph nodes and lungs: a new spontaneous breast cancer metastasis model. Clin Exp Metastasis. 2014;31:67–79.

    PubMed  Google Scholar 

  54. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD. MDA-MB-435 cells are derived from M14 melanoma cells - a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat. 2007;104:13–9.

    PubMed  Google Scholar 

  55. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–405.

    CAS  PubMed  Google Scholar 

  56. Pulaski BA, Ostrand-Rosenberg S. Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res. 1998.

  57. Zhang Y, Zhang N, Hoffman RM, Zhao M. Surgically-induced multi-organ metastasis in an orthotopic syngeneic imageable model of 4T1 murine breast cancer. Anticancer Res. 2015;35:4641–6.

    PubMed  Google Scholar 

  58. Catzeddu T, Bertelli G, Del Mastro L, Venturini M. Sentinel Lymph Node Biopsy in Breast Cancer Patients: The Medical Oncology Perspective. J Surg Oncol. 2004.: 129–32.

  59. Derose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MTW, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Powell E, Shao J, Yuan Y, Chen HC, Cai S, Echeverria G V, et al. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Res. 2016;18.

  61. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526:131–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu X, Taftaf R, Kawaguchi M, Chang YF, Chen W, Entenberg D, et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 2019;9:96–113.

    PubMed  Google Scholar 

  63. Bockhorn J, Prat A, Chang YF, Liu X, Huang S, Shang M, et al. Differentiation and loss of malignant character of spontaneous pulmonary metastases in patient-derived breast cancer models. Cancer Res. 2014;74:7406–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Almholt K, Juncker-Jensen A, Lærum OD, Danø K, Johnsen M, Lund LR, et al. Metastasis is strongly reduced by the matrix metalloproteinase inhibitor Galardin in the MMTV-PymT transgenic breast cancer model. Mol Cancer Ther. 2008;7:2758–67.

    CAS  PubMed  Google Scholar 

  65. Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH, et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer. 1998;77:640–4.

    CAS  PubMed  Google Scholar 

  66. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene [internet]. Cell. 1988. Available from: https://ac.els-cdn.com/0092867488901845/1-s2.0-0092867488901845-main.pdf?_tid=f3064d41-72bf-4a3e-8e39-9d25f6661dd5&acdnat=1535139485_e4f9785626faf73c0d0efcc85d4a47ee;54:105–15.

    CAS  PubMed  Google Scholar 

  67. Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW, et al. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst. 2004;96:703–8.

    CAS  PubMed  Google Scholar 

  68. Lucchini F, Sacco MG, Hu N, Villa A, Brown J, Cesano L, et al. Early and multifocal tumors in breast, salivary, Harderian and epididymal tissues developed in MMTY-Neu transgenic mice. Cancer Lett. 1992;64:203–9.

    CAS  PubMed  Google Scholar 

  69. Li Y, Hively WP, Varmus HE. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene. 2000. p. 1002–9.

  70. Kong L, Yang N, Shi L, Zhao G, Zhou W, Ding Q, et al. The optimum marker for the detection of lymphatic vessels (Review). Mol Clin Oncol [Internet]. 2017;515–20. Available from: http://www.spandidos-publications.com/10.3892/mco.2017.1356

  71. Lokmic Z. Utilizing lymphatic cell markers to visualize human lymphatic abnormalities. J Biophotonics. 2018. p. e201700117.

  72. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Jackson DG, et al. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci U S A. 2002;99:16069–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jurisic G, Detmar M. Lymphatic endothelium in health and disease. Cell Tissue Res. 2009. p. 97–108.

  74. Kahn HJ, Marks A. A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Investig. 2002;82:1255–7.

    PubMed  Google Scholar 

  75. Van Der Auwera I, Van Den Eynden GG, Colpaert CG, Van Laere SJ, Van Dam P, Van Marck EA, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res. 2005;11:7637–42.

    PubMed  Google Scholar 

  76. Van Den Eynden GG, Van Der Auwera I, Van Laere SJ, Colpaert CG, Van Dam P, Dirix LY, et al. Distinguishing blood and lymph vessel invasion in breast cancer: a prospective immunohistochemical study. Br J Cancer. 2006;94:1643–9.

    PubMed  PubMed Central  Google Scholar 

  77. Jenkins DE, Hornig YS, Oei Y, Dusich J, Purchio T. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res. 2005;7:444–54.

    Google Scholar 

  78. Shibata MA, Shibata E, Morimoto J, Eid NAS, Tanaka Y, Watanabe M, et al. An immunocompetent murine model of metastatic mammary cancer accessible to bioluminescence imaging. Anticancer Res. 2009;29:4389–95.

    PubMed  Google Scholar 

  79. Winnard PT, Kluth JB, Raman V. Noninvasive optical tracking of red fluorescent protein-expressing cancer cells in a model of metastatic breast cancer. Neoplasia. 2006;8:796–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dadiani M, Kalchenko V, Yosepovich A, Margalit R, Hassid Y, Degani H, et al. Real-time imaging of lymphogenic metastasis in orthotopic human breast cancer. Cancer Res. 2006;66:8037–41.

    CAS  PubMed  Google Scholar 

  81. Volk-Draper L, Hall K, Griggs C, Rajput S, Kohio P, Denardo D, et al. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res. 2014;74:5421–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EFJ, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359(80):1403–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakagawa T, Huang SK, Martinez SR, Tran AN, Elashoff D, Ye X, et al. Proteomic profiling of primary breast cancer predicts axillary lymph node metastasis. Cancer Res. 2006;66:11825–30.

    CAS  PubMed  Google Scholar 

  84. Vecchi M, Confalonieri S, Nuciforo P, Viganò MA, Capra M, Bianchi M, et al. Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene. 2008;27:2148–58.

    CAS  PubMed  Google Scholar 

  85. Ellsworth RE, Seebach J, Field LA, Heckman C, Kane J, Hooke JA, et al. A gene expression signature that defines breast cancer metastases. Clin Exp Metastasis. 2009;26:205–13.

    CAS  PubMed  Google Scholar 

  86. Calvo J, Sánchez-Cid L, Muñoz M, Lozano JJ, Thomson TM, Fernández PL. Infrequent loss of luminal differentiation in ductal breast Cancer metastasis. PLoS One. 2013;8:78097.

    Google Scholar 

  87. Feng Y, Sun B, Li X, Zhang L, Niu Y, Xiao C, et al. Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat. 2007;103:319–29.

    CAS  PubMed  Google Scholar 

  88. Hao X, Sun B, Hu L, Lähdesmäki H, Dunmire V, Feng Y, et al. Differential gene and Protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer. 2004;100:1110–22.

    CAS  PubMed  Google Scholar 

  89. Suzuki M, Tarin D. Gene expression profiling of human lymph node metastases and matched primary breast carcinomas: clinical implications. Mol Oncol. 2007;1:172–80.

    PubMed  PubMed Central  Google Scholar 

  90. Mathe A, Wong-Brown M, Morten B, Forbes JF, Braye SG, Avery-Kiejda KA, et al. Novel genes associated with lymph node metastasis in triple negative breast cancer. Sci Rep. 2015;5:1–13.

    Google Scholar 

  91. Chatterjee G, Pai T, Hardiman T, Avery-Kiejda K, Scott RJ, Spencer J, et al. Molecular patterns of cancer colonisation in lymph nodes of breast cancer patients 11 medical and health sciences 1112 oncology and carcinogenesis. Breast Cancer Res 2018;20.

  92. Shinozaki M, Hoon DSB, Giuliano AE, Hansen NM, Wang HJ, Turner R, et al. Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res. 2005;11:2156–62.

    CAS  PubMed  Google Scholar 

  93. Rodenhiser DI, Andrews J, Kennette W, Sadikovic B, Mendlowitz A, Tuck AB, et al. Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast Cancer Res. 2008;10:R62.

    PubMed  PubMed Central  Google Scholar 

  94. Andrews J, Kennette W, Pilon J, Hodgson A, Tuck AB, Chambers AF, Rodenhiser DI Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number. PLoS One .2010;5.

  95. Kim MS, Lebron C, Nagpal JK, Chae YK, Chang X, Huang Y, et al. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Biophys Res Commun. 2008;370:38–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Umetani N, Mori T, Koyanagi K, Shinozaki M, Kim J, Giuliano AE, et al. Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene. 2005;24:4721–7.

    CAS  PubMed  Google Scholar 

  97. Jung SP, Kim S, Nam SJ, Kim I, Bae JW. The role of the CDH1 promoter hypermethylation in the axillary lymph node metastasis and prognosis. J Breast Cancer. 2013;16:16–22.

    PubMed  PubMed Central  Google Scholar 

  98. Barekati Z, Radpour R, Lu Q, Bitzer J, Zheng H, Toniolo P, Lenner P, Zhong XY Methylation signature of lymph node metastases in breast cancer patients. BMC Cancer 2012;12.

  99. Feng W, Orlandi R, Zhao N, Carcangiu ML, Tagliabue E, Xu J, et al. Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers. BMC Cancer [Internet]. 2010;10:378 Available from: http://www.biomedcentral.com/1471-2407/10/378.

    Google Scholar 

  100. Urrutia G, Laurito S, Marzese DM, Gago F, Orozco J, Tello O, et al. Epigenetic variations in breast cancer progression to lymph node metastasis. Clin Exp Metastasis. 2015;32:99–110.

    CAS  PubMed  Google Scholar 

  101. Mathe A, Wong-Brown M, Locke WJ, Stirzaker C, Braye SG, Forbes JF, et al. DNA methylation profile of triple negative breast cancer-specific genes comparing lymph node positive patients to lymph node negative patients. Sci Rep. 2016;6:2305.

    Google Scholar 

  102. Leslie PL, Chao YL, Tsai YH, Ghosh SK, Porrello A, Van Swearingen AED, et al. Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes. Nat Commun. 2019;10:1–12.

    CAS  Google Scholar 

  103. Bao L, Qian Z, Lyng MB, Wang L, Yu Y, Wang T, et al. Coexisting genomic aberrations associated with lymph node metastasis in breast cancer. J Clin Invest. 2018;128:2310–24.

    PubMed  PubMed Central  Google Scholar 

  104. Crabb SJ, Cheang MCU, Leung S, Immonen T, Nielsen TO, Huntsman DD, et al. Basal breast cancer molecular subtype predicts for lower incidence of axillary lymph node metastases in primary breast cancer. Clin Breast Cancer. 2008;8:249–56.

    PubMed  Google Scholar 

  105. He ZY, Wu SG, Yang Q, Sun JY, Li FY, Lin Q, et al. Breast cancer subtype is associated with axillary lymph node metastasis. Med (United States). 2015;94.

  106. Wiechmann L, Sampson M, Stempel M, Jacks LM, Patil SM, King T, et al. Presenting features of breast cancer differ by molecular subtype. Ann Surg Oncol. 2009;16:2705–10.

    PubMed  Google Scholar 

  107. Ali EM, Ahmed ARH, Ali AMA. Correlation of breast Cancer subtypes based on ER, PR and HER2 expression with axillary lymph node status. Cancer Oncol Res. 2014;2:51–7.

    Google Scholar 

  108. Howland NK, Driver TD, Sedrak MP, Wen X, Dong W, Hatch S, et al. Lymph node involvement in immunohistochemistry-based molecular classifications of breast cancer. J Surg Res. 2013;185:697–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Van Calster B, Vanden Bempt I, Drijkoningen M, Pochet N, Cheng J, Van Huffel S, et al. Axillary lymph node status of operable breast cancers by combined steroid receptor and HER-2 status: triple positive tumours are more likely lymph node positive. Breast Cancer Res Treat. 2009;113:181–7.

    PubMed  Google Scholar 

  110. Bland KI, Scott-Conner CEH, Menck H, Winchester DP. Axillary dissection in breast-conserving surgery for stage I and II breast cancer: a National Cancer Data Base study of patterns of omission and implications for survival. J Am Coll Surg. 1999;188:586–95.

    CAS  PubMed  Google Scholar 

  111. Nagashima T, Sakakibara M, Nakano S, Tanabe N, Nakamura R, Nakatani Y, et al. Sentinel node micrometastasis and distant failure in breast cancer patients. Breast Cancer. 2006;13:186–91.

    PubMed  Google Scholar 

  112. Albertini JJ. Lymphatic Mapping and Sentinel Node Biopsy in the Patient With Breast Cancer. JAMA J Am Med Assoc. American Medical Association (AMA). 1996;276:1818.

    CAS  Google Scholar 

  113. Borgstein PJ, Pijpers R, Comans EF, Van Diest PJ, Boom RP, Meijer S. Sentinel lymph node biopsy in breast cancer: guidelines and pitfalls of lymphoscintigraphy and gamma probe detection. J Am Coll Surg. 1998;186:275–83.

    CAS  PubMed  Google Scholar 

  114. Burak WE, Hollenbeck ST, Zervos EE, Hock KL, Kemp LC, Young DC. Sentinel lymph node biopsy results in less postoperative morbidity compared with axillary lymph node dissection for breast cancer. Am J Surg. 2002;183:23–7.

    PubMed  Google Scholar 

  115. Krag DN, Anderson SJ, Julian TB, Brown AM, Harlow SP, Costantino JP, et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol Elsevier. 2010;11:927–33.

    Google Scholar 

  116. Rutgers E, Donker M, Poncet C, Straver M, Meijnen P, van de Velde C, et al. Abstract GS4–01: Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer patients: 10 year follow up results of the EORTC AMAROS trial (EORTC 10981/22023). Cancer Res. 2019. p. GS4–01-GS4–01.

  117. Pilewskie M, Morrow M. Axillary nodal management following neoadjuvant chemotherapy: A review. JAMA Oncol. 2017. p. 549–55.

  118. Mamtani A, Barrio AV, King TA, Van Zee KJ, Plitas G, Pilewskie M, et al. How often does Neoadjuvant chemotherapy avoid axillary dissection in patients with histologically confirmed nodal metastases? Results of a prospective study. Ann Surg Oncol. 2016;23:3467–74.

    PubMed  PubMed Central  Google Scholar 

  119. Nguyen TT, Hoskin TL, Day CN, Degnim AC, Jakub JW, Hieken TJ, et al. Decreasing use of axillary dissection in node-positive breast Cancer patients treated with Neoadjuvant chemotherapy. Ann Surg Oncol. 2018;25:2596–602.

    PubMed  Google Scholar 

  120. Ullah I, Hartman J, Bergh J. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes the journal of clinical investigation. J Clin Invest. 2018;128:1355–70.

    PubMed  PubMed Central  Google Scholar 

  121. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5:1164–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Reiter JG, Hung WT, Lee IH, Nagpal S, Giunta P, Degner S, et al. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nat Genet. 2020;52:692–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67:2649–56.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BT, DI and ERA contributed to drafting the manuscript.

Corresponding author

Correspondence to Eran R. Andrechek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

To, B., Isaac, D. & Andrechek, E.R. Studying Lymphatic Metastasis in Breast Cancer: Current Models, Strategies, and Clinical Perspectives. J Mammary Gland Biol Neoplasia 25, 191–203 (2020). https://doi.org/10.1007/s10911-020-09460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-020-09460-5

Keywords

Navigation