Skip to main content
Log in

Cholesterol Transport and Regulation in the Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The milk-producing alveolar epithelial cells secrete milk that remains after birth the principal source of nutrients for neonates. Milk secretion and composition are highly regulated processes via integrated actions of hormones and local factors which involve specific receptors and downstream signal transduction pathways. Overall milk composition is similar among mammalian species, although the content of individual constituents such as lipids may significantly differ from one species to another. The milk lipid fraction is essentially composed of triglycerides, which represent more than 95 % of the total lipids in human and commercialized bovine milk. Though sterols, including cholesterol, which is the major milk sterol, represent less than 0.5 % of the total milk lipid fraction, they are of key importance for several biological processes. Cholesterol is required for the formation of biological membranes especially in rapidly growing organisms, and for the synthesis of sterol-based compounds. Cholesterol found in milk originates predominantly from blood uptake and, to a certain extent, from local synthesis in the mammary tissue. The present review summarizes current knowledge on cellular mechanisms and regulatory processes determining intra- and transcellular cholesterol transport in the mammary gland. Cholesterol exchanges between the blood, the mammary alveolar cells and the milk, and the likely role of active cholesterol transporters in these processes are discussed. In this context, the hormonal regulation and signal transduction pathways promoting active cholesterol transport as well as potential regulatory crosstalks are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC transporter:

ATP-binding cassette transporter

ACAT:

Acyl-coenzyme A: cholesterol acyltransferase

ApoA-I:

Apolipoprotein A-I

CEH:

Cholesteryl ester hydrolase

CLD:

Cytoplasmic lipid droplets

HDL:

High density lipoprotein

HMG-CoA:

3-hydroxy-3-methylglutaryl-CoA

HSL:

Hormone-sensitive lipase

JAK-2:

Janus-kinase-2

LAL:

Lysosomal acid lipase

LDL:

Low density lipoprotein

LPL:

Lipoprotein lipase

LXR:

Liver X receptor

MAPK:

Mitogen-activated protein kinase

MEC:

Alveolar mammary epithelial cell

MFG:

Milk fat globule

NPC:

Niemann-Pick type C

OSBP:

Oxysterol-binding protein

ORP:

OSBP-releated protein

PPAR:

Peroxisome proliferator-activated receptor

PREB:

Prolactin regulatory element binding

SR-BI:

Scavenger receptor class B type I

SREBP:

Sterol response element binding protein

VLDL:

Very low density lipoprotein

References

  1. Long CA, Patton S, McCarthy RD. Origins of the cholesterol in milk. Lipids. 1980;15(10):853–7.

    CAS  PubMed  Google Scholar 

  2. McManaman J, Reyland M, Thrower E. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia. 2006;11(3–4):249–68.

    PubMed  Google Scholar 

  3. McManaman J, Neville M. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629–41.

    CAS  PubMed  Google Scholar 

  4. Mani O, Korner M, Sorensen MT, Sejrsen K, Wotzkow C, Ontsouka CE, et al. Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R642–54.

    CAS  PubMed  Google Scholar 

  5. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9.

    CAS  PubMed  Google Scholar 

  6. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72.

    CAS  PubMed  Google Scholar 

  7. Gofflot F, Hars C, Illien F, Chevy F, Wolf C, Picard JJ, et al. Molecular mechanisms underlying limb anomalies associated with cholesterol deficiency during gestation: implications of Hedgehog signaling. Hum Mol Genet. 2003;12(10):1187–98.

    CAS  PubMed  Google Scholar 

  8. Mishkel MA. Neonatal plasma lipids as measured in cord blood. Can Med Assoc J. 1974;111(8):775–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Isomura H, Takimoto H, Miura F, Kitazawa S, Takeuchi T, Itabashi K, et al. Type of milk feeding affects hematological parameters and serum lipid profile in Japanese infants. Pediatr Int. 2011;53(6):807–13.

    CAS  PubMed  Google Scholar 

  10. Albrecht C, Huang X, Ontsouka EC. Cholesterol transporters in lactating and non-lactating human mammary tissue. In: In dietary and nutritional aspects of human breast milk. Wageningen Academic Publishers; 2013.

  11. Owen CG, Martin RM, Whincup PH, Davey-Smith G, Gillman MW, Cook DG. The effect of breastfeeding on mean body mass index throughout life: a quantitative review of published and unpublished observational evidence. Am J Clin Nutr. 2005;82(6):1298–307.

    CAS  PubMed  Google Scholar 

  12. Owen CG, Martin RM, Whincup PH, Smith GD, Cook DG. Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics. 2005;115(5):1367–77.

    PubMed  Google Scholar 

  13. Rudnicka AR, Owen CG, Strachan DP. The effect of breastfeeding on cardiorespiratory risk factors in adult life. Pediatrics. 2007;119(5):e1107–15.

    PubMed  Google Scholar 

  14. Peaker M. The mammary gland in mammalian evolution: a brief commentary on some of the concepts. J Mammary Gland Biol. 2002;7(3):347–53.

    Google Scholar 

  15. Victora CG, Vaughan JP, Lombardi C, Fuchs SMC, Gigante LP, Smith PG, et al. Evidence for protection by breast-feeding against infant deaths from infectious-diseases in Brazil. Lancet. 1987;2(8554):319–22.

    CAS  PubMed  Google Scholar 

  16. Picaud JC, Chapalain V, Paineau D, Zourabichvili O, Bornet FR, Duhamel JF. Incidence of infectious diseases in infants fed follow-on formula containing synbiotics: an observational study. Acta Paediatr. 2010;99(11):1695–700.

    PubMed Central  PubMed  Google Scholar 

  17. Haave NC, Innis SM. Cholesterol synthesis and accretion within various tissues of the fetal and neonatal rat. Metabolism. 2001;50(1):12–8.

    CAS  PubMed  Google Scholar 

  18. Jensen RG. The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci. 2002;85(2):295–350.

    CAS  PubMed  Google Scholar 

  19. Oram JF, Vaughan AM. ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ Res. 2006;99(10):1031–43.

    CAS  PubMed  Google Scholar 

  20. Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, et al. Role of cholesterol in the development and progression of breast cancer. Am J Pathol. 2011;178(1):402–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Coughlin SS, Ekwueme DU. Breast cancer as a global health concern. Cancer Epidemiol. 2009;33(5):315–8.

    PubMed  Google Scholar 

  22. Awad AB, Williams H, Fink CS. Phytosterols reduce in vitro metastatic ability of MDA-MB-231 human breast cancer cells. Nutr Cancer. 2001;40(2):157–64.

    CAS  PubMed  Google Scholar 

  23. Dessi S, Batetta B, Pulisci D, Spano O, Anchisi C, Tessitore L, et al. Cholesterol content in tumor-tissues is inversely associated with high-density-lipoprotein cholesterol in serum in patients with gastrointestinal cancer. Cancer. 1994;73(2):253–8.

    CAS  PubMed  Google Scholar 

  24. Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem. 2004;91(1):54–69.

    CAS  PubMed  Google Scholar 

  25. Li YC, Park MJ, Ye SK, Kim CW, Kim YN. Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 2006;168(4):1107–18. quiz 1404-1105.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Martin BJ, van Golen KL. A comparison of cholesterol uptake and storage in inflammatory and noninflammatory breast cancer cells. Int J Breast Cancer. 2012;2012:412581.

    PubMed Central  PubMed  Google Scholar 

  27. Armstrong B, Doll R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer. 1975;15(4):617–31.

    CAS  PubMed  Google Scholar 

  28. Carroll KK, Gammal EB, Plunkett ER. Dietary fat and mammary cancer. Can Med Assoc J. 1968;98(12):590–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kolonel LN, Hankin JH, Lee J, Chu SY, Nomura AMY, Hinds MW. Nutrient intakes in relation to cancer incidence in Hawaii. Brit J Cancer. 1981;44(3):332–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Yu SZ, Lu RF, Xu DD, Howe GR. A case-control study of dietary and nondietary risk factors for breast cancer in Shanghai. Cancer Res. 1990;50(16):5017–21.

    CAS  PubMed  Google Scholar 

  31. Potischman N, Mcculloch CE, Byers T, Houghton L, Nemoto T, Graham S, et al. Associations between breast-cancer, plasma triglycerides, and cholesterol. Nutr Cancer. 1991;15(3–4):205–15.

    CAS  PubMed  Google Scholar 

  32. Howe GR, Hirohata T, Hislop TG, Iscovich JM, Yuan JM, Katsouyanni K, et al. Dietary factors and risk of breast cancer: combined analysis of 12 case-control studies. J Natl Cancer Inst. 1990;82(7):561–9.

    CAS  PubMed  Google Scholar 

  33. Bani IA, Williams CM, Boulter PS, Dickerson JW. Plasma lipids and prolactin in patients with breast cancer. Br J Cancer. 1986;54(3):439–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Linzell JL, Peaker M. Mechanism of milk secretion. Physiol Rev. 1971;51(3):564–97.

    CAS  PubMed  Google Scholar 

  35. Connor WE, Lin DS. Origin of milk cholesterol in the rabbit and guinea pig. Am J Physiol. 1967;213(6):1353–8.

    CAS  PubMed  Google Scholar 

  36. Scow RO, Chernick SS, Fleck TR. Lipoprotein lipase and uptake of triacylglycerol, cholesterol and phosphatidylcholine from chylomicrons by mammary and adipose tissue of lactating rats in vivo. Biochim Biophys Acta. 1977;487(2):297–306.

    CAS  PubMed  Google Scholar 

  37. Miller PS, Reis BL, Calvert CC, DePeters EJ, Baldwin RL. Patterns of nutrient uptake by the mammary glands of lactating dairy cows. J Dairy Sci. 1991;74(11):3791–9.

    CAS  PubMed  Google Scholar 

  38. Zinder O, Mendelson CR, Blanchette-Mackie EF, Scow RO. Lipoprotein lipase and uptake of chylomicron triacylglycerol and cholesterol by perfused rat mammary tissue. Biochim Biophys Acta. 1976;431(3):526–37.

    CAS  PubMed  Google Scholar 

  39. Wang YY, Tong J, Li SP, Zhang R, Chen L, Wang YH, et al. Over-expression of human lipoprotein lipase in mouse mammary glands leads to reduction of milk triglyceride and delayed growth of suckling pups. PLoS One. 2011;6(6):e20895.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J. 1992;287(Pt 2):337–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev. 2008;88(3):887–918.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Monks J, Huey PU, Hanson L, Eckel RH, Neville MC, Gavigan S. A lipoprotein-containing particle is transferred from the serum across the mammary epithelium into the milk of lactating mice. J Lipid Res. 2001;42(5):686–96.

    CAS  PubMed  Google Scholar 

  43. Landschulz KT, Pathak RK, Rigotti A, Krieger M, Hobbs HH. Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest. 1996;98(4):984–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Ontsouka EC, Huang X, Stieger B, Albrecht C. Characteristics and functional relevance of apolipoprotein-A1 and cholesterol binding in mammary gland tissues and epithelial cells. PLoS One. 2013;8(7):e70407.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Miller WL. Steroid hormone synthesis in mitochondria. Mol Cell Endocrinol. 2013;379:62–73.

    CAS  PubMed  Google Scholar 

  46. Chang TY, Chang CCY, Lin S, Yu CJ, Li BL, Miyazaki A. Roles of acyl-coenzyme A : cholesterol acyltransferase-1 and-2. Curr Opin Lipidol. 2001;12(3):289–96.

    CAS  PubMed  Google Scholar 

  47. Ross AC, Rowe JF. Cholesterol esterification by mammary-gland microsomes from the lactating rat. Proc Soc Exp Biol Med. 1984;176(1):42–7.

    CAS  PubMed  Google Scholar 

  48. Shand JH, West DW. Acyl-Coa-Cholesterol acyltransferase activity in the rat mammary-gland - variation during pregnancy and lactation. Lipids. 1991;26(2):150–4.

    CAS  PubMed  Google Scholar 

  49. Suguro T, Watanabe T, Kanome T, Kodate S, Hirano T, Miyazaki A, et al. Serotonin acts as an up-regulator of acyl-coenzyme A : cholesterol acyltransferase-1 in human monocyte-macrophages. Atherosclerosis. 2006;186(2):275–81.

    CAS  PubMed  Google Scholar 

  50. Martin-Hidalgo A, Huerta L, Alvarez N, Alegria G, Del Val TM, Herrera E. Expression, activity, and localization of hormone-sensitive lipase in rat mammary gland during pregnancy and lactation. J Lipid Res. 2005;46(4):658–68.

    CAS  PubMed  Google Scholar 

  51. Zidi A, Fernandez-Cabanas VM, Carrizosa J, Jordana J, Urrutia B, Polvillo O, et al. Genetic variation at the goat hormone-sensitive lipase (LIPE) gene and its association with milk yield and composition. J Dairy Res. 2010;77(2):190–8.

    CAS  PubMed  Google Scholar 

  52. Yonezawa T, Haga S, Kobayashi Y, Katoh K, Obara Y. Regulation of hormone-sensitive lipase expression by saturated fatty acids and hormones in bovine mammary epithelial cells. Biochem Biophys Res Commun. 2008;376(1):36–9.

    CAS  PubMed  Google Scholar 

  53. Botham KM, Martinez MJ, Ochoa B. Cholesteryl ester synthesis and hydrolysis in the rat mammary gland during pregnancy and lactation. J Biochem. 1993;114(3):415–20.

    CAS  PubMed  Google Scholar 

  54. Maxfield FR, Wustner D. Intracellular cholesterol transport. J Clin Invest. 2002;110(7):891–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Pentchev PG. Niemann-Pick C research from mouse to gene. Biochim Biophys Acta. 2004;1685(1–3):3–7.

    CAS  PubMed  Google Scholar 

  56. Vanier MT, Millat G. Niemann-Pick disease type C. Clin Genet. 2003;64(4):269–81.

    CAS  PubMed  Google Scholar 

  57. Mani O, Sorensen MT, Sejrsen K, Bruckmaier RM, Albrecht C. Differential expression and localization of lipid transporters in the bovine mammary gland during the pregnancy-lactation cycle. J Dairy Sci. 2009;92(8):3744–56.

    CAS  PubMed  Google Scholar 

  58. Lev S. Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2012;4(10):pii: a013300.

    Google Scholar 

  59. Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008;9(2):125–38.

    CAS  PubMed  Google Scholar 

  60. Hao MM, Lin SX, Karylowski OJ, Wustner D, McGraw TE, Maxfield FR. Vesicular and non-vesicular sterol transport in living cells - The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem. 2002;277(1):609–17.

    CAS  PubMed  Google Scholar 

  61. Raychaudhuri S, Im YJ, Hurley JH, Prinz WA. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J Cell Biol. 2006;173(1):107–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hynynen R, Laitinen S, Kakela R, Tanhuanpaa K, Lusa S, Ehnholm C, et al. Overexpression of OSBP-related protein 2 (ORP2) induces changes in cellular cholesterol metabolism and enhances endocytosis. Biochem J. 2005;390:273–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Misumi Y, Miki K, Takatsuki A, Tamura G, Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem. 1986;261(24):11398–403.

    CAS  PubMed  Google Scholar 

  64. Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989;56(5):801–13.

    CAS  PubMed  Google Scholar 

  65. Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia. 1998;3(3):259–73.

    CAS  PubMed  Google Scholar 

  66. Keenan TW. Assembly and secretion of the lipid globules of milk. Adv Exp Med Biol. 2001;501:125–36.

    CAS  PubMed  Google Scholar 

  67. Mani O, Korner M, Ontsouka CE, Sorensen MT, Sejrsen K, Bruckmaier RM, et al. Identification of ABCA1 and ABCG1 in milk fat globules and mammary cells–implications for milk cholesterol secretion. J Dairy Sci. 2011;94(3):1265–76.

    CAS  PubMed  Google Scholar 

  68. Mesilati-Stahy R, Mida K, Argov-Argaman N. Size-dependent lipid content of bovine milk fat globule and membrane phospholipids. J Agric Food Chem. 2011;59(13):7427–35.

    CAS  PubMed  Google Scholar 

  69. Keenan TW. Milk lipid globules and their surrounding membrane: a brief history and perspectives for future research. J Mammary Gland Biol Neoplasia. 2001;6(3):365–71.

    CAS  PubMed  Google Scholar 

  70. Patton S, Jensen RG. Lipid metabolism and membrane functions of the mammary gland. Prog Chem Fats Other Lipids. 1975;14(4):163–277.

    CAS  PubMed  Google Scholar 

  71. Nagao K, Takahashi K, Azuma Y, Takada M, Kimura Y, Matsuo M, et al. ATP hydrolysis-dependent conformational changes in the extracellular domain of ABCA1 are associated with apoA-I binding. J Lipid Res. 2012;53(1):126–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22(4):352–5.

    CAS  PubMed  Google Scholar 

  73. Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med. 2004;350(13):1296–303.

    CAS  PubMed  Google Scholar 

  74. Ueda K. ABC proteins protect the human body and maintain optimal health. Biosci Biotechnol Biochem. 2011;75(3):401–9.

    CAS  PubMed  Google Scholar 

  75. Linsel-Nitschke P, Jehle AW, Shan J, Cao G, Bacic D, Lan D, et al. Potential role of ABCA7 in cellular lipid efflux to apoA-I. J Lipid Res. 2005;46(1):86–92.

    CAS  PubMed  Google Scholar 

  76. Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W, et al. ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem. 2003;278(44):42906–12.

    CAS  PubMed  Google Scholar 

  77. Abe-Dohmae S, Ueda K, Yokoyama S. ABCA7, a molecule with unknown function. FEBS Lett. 2006;580(4):1178–82.

    CAS  PubMed  Google Scholar 

  78. Kim WS, Fitzgerald ML, Kang K, Okuhira K, Bell SA, Manning JJ, et al. Abca7 null mice retain normal macrophage phosphatidylcholine and cholesterol efflux activity despite alterations in adipose mass and serum cholesterol levels. J Biol Chem. 2005;280(5):3989–95.

    CAS  PubMed  Google Scholar 

  79. Reinhardt TA, Lippolis JD. Bovine milk fat globule membrane proteome. J Dairy Res. 2006;73(4):406–16.

    CAS  PubMed  Google Scholar 

  80. Stefulj J, Panzenboeck U, Becker T, Hirschmugl B, Schweinzer C, Lang I, et al. Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ Res. 2009;104(5):600–8.

    CAS  PubMed  Google Scholar 

  81. Lee J, Shirk A, Oram JF, Lee SP, Kuver R. Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway. Biochem J. 2002;364(Pt 2):475–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Liao Y, Alvarado R, Phinney B, Lonnerdal B. Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. J Proteome Res. 2011;10(8):3530–41.

    CAS  PubMed  Google Scholar 

  83. Reinhardt TA, Lippolis JD. Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J Dairy Sci. 2008;91(6):2307–18.

    CAS  PubMed  Google Scholar 

  84. Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev. 2002;16(24):3223–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. McManaman JL, Palmer CA, Wright RM, Neville MC. Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J Physiol. 2002;545(Pt 2):567–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Heid HW, Schnolzer M, Keenan TW. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J. 1996;320(Pt 3):1025–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Langmann T, Klucken J, Reil M, Liebisch G, Luciani MF, Chimini G, et al. Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem Biophys Res Commun. 1999;257(1):29–33.

    CAS  PubMed  Google Scholar 

  88. Farke C, Viturro E, Meyer HH, Albrecht C. Identification of the bovine cholesterol efflux regulatory protein ABCA1 and its expression in various tissues. J Anim Sci. 2006;84(11):2887–94.

    CAS  PubMed  Google Scholar 

  89. Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R, Kahn BB, et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci U S A. 2004;101(48):16801–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Umemoto T, Han CY, Mitra P, Averill MM, Tang CR, Goodspeed L, et al. Apolipoprotein AI and high-density lipoprotein have anti-inflammatory effects on adipocytes via cholesterol transporters ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1. Circ Res. 2013;112(10):1345–54.

    CAS  PubMed  Google Scholar 

  91. Schimanski S, Wild PJ, Treeck O, Horn F, Sigruener A, Rudolph C, et al. Expression of the lipid transporters ABCA3 and ABCA1 is diminished in human breast cancer tissue. Horm Metab Res. 2010;42(2):102–9.

    Google Scholar 

  92. Takahashi K, Kimura Y, Nagata K, Yamamoto A, Matsuo M, Ueda K. ABC proteins: key molecules for lipid homeostasis. Med Mol Morphol. 2005;38(1):2–12.

    CAS  PubMed  Google Scholar 

  93. Vaughan AM, Oram JF. ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem. 2005;280(34):30150–7.

    CAS  PubMed  Google Scholar 

  94. Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K, Kioka N, et al. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J Lipid Res. 2006;47(8):1791–802.

    CAS  PubMed  Google Scholar 

  95. Viturro E, Farke C, Meyer HH, Albrecht C. Identification, sequence analysis and mRNA tissue distribution of the bovine sterol transporters ABCG5 and ABCG8. J Dairy Sci. 2006;89(2):553–61.

    CAS  PubMed  Google Scholar 

  96. Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet. 2001;27(1):79–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Yu L, Hammer RE, Li-Hawkins J, Von Bergmann K, Lutjohann D, Cohen JC, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A. 2002;99(25):16237–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest. 2002;110(5):671–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290(5497):1771–5.

    CAS  PubMed  Google Scholar 

  100. Phillips MC, Gillotte KL, Haynes MP, Johnson WJ, Lund-Katz S, Rothblat GH. Mechanisms of high density lipoprotein-mediated efflux of cholesterol from cell plasma membranes. Atherosclerosis. 1998;137(Suppl):S13–7.

    CAS  PubMed  Google Scholar 

  101. McLean LR, Phillips MC. Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles. Biochemistry-us. 1981;20(10):2893–900.

    CAS  Google Scholar 

  102. Mukherjee S, Zha XH, Tabas I, Maxfield FR. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J. 1998;75(4):1915–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Asztalos BF, Bittman R, et al. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res. 2011;52(12):2332–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Schroeder F, Holland JF, Bieber LL. Fluorometric evidence for the binding of cholesterol to the filipin complex. J Antibiot (Tokyo). 1971;24(12):846–9.

    CAS  Google Scholar 

  105. Edwards SH, Kimberly MM, Pyatt SD, Stribling SL, Dobbin KD, Myers GL. Proposed serum cholesterol reference measurement procedure by gas chromatography-isotope dilution mass spectrometry. Clin Chem. 2011;57(4):614–22.

    CAS  PubMed  Google Scholar 

  106. VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, et al. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest. 2004;113(4):598–608.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Stockinger W, Castoreno AB, Wang Y, Pagnon JC, Nohturfft A. Real-time analysis of endosomal lipid transport by live cell scintillation proximity assay. J Lipid Res. 2004;45(11):2151–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Sorg D, Potzel A, Beck M, Meyer HH, Viturro E, Kliem H. Effects of cell culture techniques on gene expression and cholesterol efflux in primary bovine mammary epithelial cells derived from milk and tissue. In Vitro Cell Dev Biol Anim. 2012;48(9):550–3.

    CAS  PubMed  Google Scholar 

  109. Jensen RG. The lipids in human milk. Prog Lipid Res. 1996;35(1):53–92.

    CAS  PubMed  Google Scholar 

  110. Neville MC, Picciano MF. Regulation of milk lipid secretion and composition. Annu Rev Nutr. 1997;17:159–83.

    CAS  PubMed  Google Scholar 

  111. Oppi-Williams C, Suagee JK, Corl BA. Regulation of lipid synthesis by liver X receptor alpha and sterol regulatory element-binding protein 1 in mammary epithelial cells. J Dairy Sci. 2013;96(1):112–21.

    CAS  PubMed  Google Scholar 

  112. Shand JH, West DW. Co-ordinate diurnal variations in the activities of cholesterol-metabolizing enzymes in the rat mammary gland. Biochem Soc Trans. 1989;17(6):1081–2.

    CAS  PubMed  Google Scholar 

  113. Duncan RE, El-Sohemy A, Archer MC. Delivery of mevalonate to murine extrahepatic tissues via mini-osmotic pumps. J Pharmacol Toxicol Methods. 2004;50(2):139–43.

    CAS  PubMed  Google Scholar 

  114. Bionaz M, Chen SW, Khan MJ, Loor JJ. Functional role of PPARs in ruminants: potential targets for fine-tuning metabolism during growth and lactation. Ppar Res. 2013;2013:28.

    Google Scholar 

  115. Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev. 2006;86(2):465–514.

    CAS  PubMed  Google Scholar 

  116. Bjorkhem I, Diczfalusy U. Oxysterols: friends, foes, or just fellow passengers? Arterioscler Thromb Vasc Biol. 2002;22(5):734–42.

    CAS  PubMed  Google Scholar 

  117. Schroepfer Jr GJ. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80(1):361–554.

    CAS  PubMed  Google Scholar 

  118. Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A. 1999;96(1):266–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. McFadden JW, Corl BA. Activation of liver X receptor (LXR) enhances de novo fatty acid synthesis in bovine mammary epithelial cells. J Dairy Sci. 2010;93(10):4651–8.

    CAS  PubMed  Google Scholar 

  120. Repa JJ, Mangelsdorf DJ. Nuclear receptor regulation of cholesterol and bile acid metabolism. Curr Opin Biotechnol. 1999;10(6):557–63.

    CAS  PubMed  Google Scholar 

  121. Bionaz M, Hausman GJ, Loor JJ, Mandard S. Physiological and nutritional roles of PPAR across species. PPAR Res. 2013;2013:807156.

    PubMed Central  PubMed  Google Scholar 

  122. Shi HB, Luo J, Zhu JJ, Li J, Sun YT, Lin XZ, et al. PPAR gamma regulates genes involved in triacylglycerol synthesis and secretion in mammary gland epithelial cells of dairy goats. Ppar Res. 2013;2013:310948.

    PubMed Central  PubMed  Google Scholar 

  123. Bionaz M, Thering BJ, Loor JJ. Fine metabolic regulation in ruminants via nutrient-gene interactions: saturated long-chain fatty acids increase expression of genes involved in lipid metabolism and immune response partly through PPAR-alpha activation. Br J Nutr. 2012;107(2):179–91.

    CAS  PubMed  Google Scholar 

  124. Schmitz G, Langmann T. Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim Biophys Acta. 2005;1735(1):1–19.

    CAS  PubMed  Google Scholar 

  125. Zinder O, Hamosh M, Fleck TRC, Scow RO. Effect of prolactin on lipoprotein-lipase in mammary-gland and adipose-tissue of rats. Am J Physiol. 1974;226(3):744–8.

    CAS  Google Scholar 

  126. Da Costa TH, Williamson DH. Regulation of rat mammary-gland uptake of orally administered [1-14C]triolein by insulin and prolactin: evidence for bihormonal control of lipoprotein lipase activity. Biochem J. 1994;300(Pt 1):257–62.

    PubMed Central  PubMed  Google Scholar 

  127. Barber MC, Clegg RA, Finley E, Vernon RG, Flint DJ. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J Endocrinol. 1992;135(2):195–202.

    CAS  PubMed  Google Scholar 

  128. Fliss MS, Hinkle PM, Bancroft C. Expression cloning and characterization of PREB (prolactin regulatory element binding), a novel WD motif DNA-binding protein with a capacity to regulate prolactin promoter activity. Mol Endocrinol. 1999;13(4):644–57.

    Google Scholar 

  129. Neville MC, Anderson SM, McManaman JL, Badger TM, Bunik M, Contractor N, et al. Lactation and neonatal nutrition: defining and refining the critical questions. J Mammary Gland Biol Neoplasia. 2012;17(2):167–88.

    PubMed Central  PubMed  Google Scholar 

  130. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362(6423):801–9.

    CAS  PubMed  Google Scholar 

  131. Witztum JL, Steinberg D. Role of oxidized low-density-lipoprotein in atherogenesis. J Clin Invest. 1991;88(6):1785–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Sakai M, Kobori S, Miyazaki A, Horiuchi S. Macrophage proliferation in atherosclerosis. Curr Opin Lipidol. 2000;11(5):503–9.

    CAS  PubMed  Google Scholar 

  133. Annema W, Tietge UJ. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies. Nutr Metab (Lond). 2012;9(1):25.

    CAS  Google Scholar 

  134. Calpe-Berdiel L, Rotllan N, Palomer X, Ribas V, Blanco-Vaca F, Escola-Gil JC. Direct evidence in vivo of impaired macrophage-specific reverse cholesterol transport in ATP-binding cassette transporter A1-deficient mice. Biochim Biophys Acta. 2005;1738(1–3):6–9.

    CAS  PubMed  Google Scholar 

  135. Calpe-Berdiel L, Rotllan N, Fievet C, Roig R, Blanco-Vaca F, Escola-Gil JC. Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. J Lipid Res. 2008;49(9):1904–11.

    CAS  PubMed  Google Scholar 

  136. Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest. 2005;115(10):2870–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Moore RE, Navab M, Millar JS, Zimetti F, Hama S, Rothblat GH, et al. Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res. 2005;97(8):763–71.

    CAS  PubMed  Google Scholar 

  138. Rudolph MC, Monks J, Burns V, Phistry M, Marians R, Foote MR, et al. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am J Physiol Endocrinol Metab. 2010;299(6):E918–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Rudolph MC, Russell TD, Webb P, Neville MC, Anderson SM. Prolactin-mediated regulation of lipid biosynthesis genes in vivo in the lactating mammary epithelial cell. Am J Physiol Endocrinol Metab. 2011;300(6):E1059–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 1998;93(5):693–704.

    CAS  PubMed  Google Scholar 

  141. Smith JL, Lear SR, Forte TM, Ko W, Massimi M, Erickson SK. Effect of pregnancy and lactation on lipoprotein and cholesterol metabolism in the rat. J Lipid Res. 1998;39(11):2237–49.

    CAS  PubMed  Google Scholar 

  142. Tang C, Liu Y, Kessler PS, Vaughan AM, Oram JF. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J Biol Chem. 2009;284(47):32336–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Picciano MF. Representative values for constituents of human milk. Pediatr Clin N Am. 2001;48(1):263–4.

    CAS  Google Scholar 

  144. Bitman J, Freed LM, Neville MC, Wood DL, Hamosh P, Hamosh M. Lipid composition of prepartum human mammary secretion and postpartum milk. J Pediatr Gastroenterol Nutr. 1986;5(4):608–15.

    CAS  PubMed  Google Scholar 

  145. Jandal JM. Comparative aspects of goat and sheep milk. Small Rumin Res. 1996;22(2):177–85.

    Google Scholar 

  146. Park YW, Juarez M, Ramos M, Haenlein GFW. Physico-chemical characteristics of goat and sheep milk. Small Rumin Res. 2007;68(1–2):88–113.

    Google Scholar 

Download references

Acknowledgments

The present paper was supported by the Swiss National Science Foundation through the National Centre of Competence in Research TransCure. The authors thank Xiao Huang for her major contribution in the design of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Albrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ontsouka, E.C., Albrecht, C. Cholesterol Transport and Regulation in the Mammary Gland. J Mammary Gland Biol Neoplasia 19, 43–58 (2014). https://doi.org/10.1007/s10911-014-9316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-014-9316-x

Keywords

Navigation