Skip to main content

Advertisement

Log in

Abstract

Metalloestrogens are metals that activate the estrogen receptor in the absence of estradiol. The metalloestrogens fall into two subclasses: metal/metalloid anions and bivalent cationic metals. The metal/metalloid anions include compounds such as arsenite, nitrite, selenite, and vanadate while the bivalent cations include metals such as cadmium, calcium, cobalt, copper, nickel, chromium, lead, mercury, and tin. The best studied metalloestrogen is cadmium. It is a heavy metal and a prevalent environmental contaminant with no known physiological function. This review addresses our current understanding of the mechanism by which cadmium and the bivalent cationic metals activate estrogen receptor-α. The review also summarizes the in vitro and in vivo evidence that cadmium functions as an estrogen and the potential role of cadmium in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AF-1:

transactivation function -1

AF-2:

transactivation function -2

Akt:

serine/threonine specific kinase

bw:

body weight

EDTA:

ethylenediaminetetraacetic acid

ERα:

estrogen receptor-alpha

ERE:

estrogen response element

ERK:

extracellular signal-regulated kinases

GPR30:

G protein-coupled receptor 30

LBD:

ligand binding domain

PR:

progesterone receptor

References

  1. Colborn T, von Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101:378–84.

    PubMed  CAS  Google Scholar 

  2. Garcia-Morales P, Saceda M, Kenney N, Kim N, Salomon DS, Gottardis MM, et al. Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem. 1994;269:16896–901.

    PubMed  CAS  Google Scholar 

  3. Stoica A, Katzenellenbogen BS, Martin MB. Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol Endocrinol. 2000;14:545–53.

    PubMed  CAS  Google Scholar 

  4. Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nature Med. 2003;9:1081–4.

    PubMed  CAS  Google Scholar 

  5. Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M, et al. Estrogen like activity of metals in MCF-7 breast cancer cells. Endocrinol. 2003;144:2425–36.

    CAS  Google Scholar 

  6. Margeat E, Poujol N, Boulahtouf A, Chen Y, Muller JD, Gratton E, et al. The human estrogen receptor alpha dimer binds a single SRC-1 coactivator molecule with an affinity dictated by agonist structure. J Mol Biol. 2001;306:433–42.

    PubMed  CAS  Google Scholar 

  7. Veselik DJ, Divekar S, Dakshanamurthy S, Storchan GB, Turner JM, Graham KL, et al. Activation of estrogen receptor-alpha by the anion nitrite. Cancer Res. 2008;68:3950–8.

    PubMed  CAS  Google Scholar 

  8. Divekar SD, Storchan GB, Sperle K, Veselik DJ, Johnson E, Dakshanamurthy S, et al. The role of calcium in the activation of estrogen receptor-alpha. Cancer Res. 2011;71:1658–68.

    PubMed  CAS  Google Scholar 

  9. Stoica A, Pentecost E, Martin MB. Effect of arsenite on estrogen receptor-a expression and activity in MCF-7 breast cancer cells. Endocrinol. 2000;141:3595–602.

    CAS  Google Scholar 

  10. Stoica A, Pentecost E, Martin MB. Effects of selenite on estrogen receptor-a expression and activity in MCF-7 breast cancer cells. J Cell Biochem. 2000;79:282–92.

    PubMed  CAS  Google Scholar 

  11. Pettersson K, Gustafsson JA. Role of estrogen receptor beta in estrogen action. Annu Rev Physiol. 2001;63:165–92.

    PubMed  CAS  Google Scholar 

  12. Yamamoto KR. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet. 1985;19:209–52.

    PubMed  CAS  Google Scholar 

  13. Kumar V, Green S, Stack G, Berry M, Jin JR, Chambon P. Functional domains of the human estrogen receptor. Cell. 1987;51:941–51.

    PubMed  CAS  Google Scholar 

  14. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB. Role of hsp90 and the hsp 90-binding immunophilins in signalling protein movement. Cell Signal. 2004;16:857–72.

    PubMed  CAS  Google Scholar 

  15. Cheung J, Smith DF. Molecular chaperone interactions with steroid receptors: an update. Mol Endocrinol. 2000;14:939–46.

    PubMed  CAS  Google Scholar 

  16. Ali S, Metzger D, Bornert JM, Chambon P. Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J. 1993;12:1153–60.

    PubMed  CAS  Google Scholar 

  17. Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS. Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem. 1994;269:4458–66.

    PubMed  Google Scholar 

  18. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engstrom O, et al. Molecular basis of agonism and antagonism in the estrogen receptor. Nature. 1997;389:753–8.

    PubMed  CAS  Google Scholar 

  19. Giovannelli P, Di DM, Giraldi T, Migliaccio A, Castoria G, Auricchio F. Targeting rapid action of sex-steroid receptors in breast and prostate cancers. Front Biosci (Elite Ed). 2012;4:453–61.

    Google Scholar 

  20. Ordonez-Moran P, Munoz A. Nuclear receptors: genomic and non-genomic effects converge. Cell Cycle. 2009;8:1675–80.

    PubMed  CAS  Google Scholar 

  21. Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol. 1996;3:87–94.

    PubMed  CAS  Google Scholar 

  22. Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, et al. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature. 1996;378:681–9.

    Google Scholar 

  23. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature. 1995;375:377–82.

    PubMed  CAS  Google Scholar 

  24. Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature. 1995;378:690–7.

    PubMed  CAS  Google Scholar 

  25. Tanenbaum DM, Wang Y, Williams SP, Sigler PB. Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domain. Proc Natl Acad Sci USA. 1998;95:5998–6003.

    PubMed  CAS  Google Scholar 

  26. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95:927–37.

    PubMed  CAS  Google Scholar 

  27. Egea PF, Mitschler A, Rochel N, Ruff M, Chambon P, Moras D. Crystal structure of the human RXRalpha ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. EMBO J. 2000;19:2592–601.

    PubMed  CAS  Google Scholar 

  28. Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, McLachlan JA, et al. Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA. 1992;89:4658–62.

    PubMed  CAS  Google Scholar 

  29. Osada N, Hirata S, Shoda T, Hoshi K. The novel untranslated exon “exon 0T” encoded between the exon 0 and exon 1 of the rat estrogen receptor alpha (ER alpha) gene. Endocr J. 2001;48:465–72.

    PubMed  CAS  Google Scholar 

  30. Han SJ, Lonard DM, O’Malley BW. Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends Endocrinol Metab. 2009;20:8–15.

    PubMed  CAS  Google Scholar 

  31. Shupnik MA. Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways: implications for cell proliferation. Oncogene. 2004;23:7979–89.

    PubMed  CAS  Google Scholar 

  32. Kuwahara K, Angkawidjaja C, Matsumura H, Koga Y, Takano K, Kanaya S. Importance of the Ca2+-binding sites in the N-catalytic domain of a family I.3 lipase for activity and stability. Protein Eng Des Sel. 2008;21:737–44.

    PubMed  CAS  Google Scholar 

  33. Wimberly B, Thulin E, Chazin WJ. Characterization of the N-terminal half-saturated state of calbindin D9k: NMR studies of the N56A mutant. Protein Sci. 1995;4:1045–55.

    PubMed  CAS  Google Scholar 

  34. Akke M, Forsen S, Chazin WJ. Solution structure of (Cd2+)1-calbindin D9k reveals details of the stepwise structural changes along the Apo–>(Ca2+)II1–>(Ca2+)I, II2 binding pathway. J Mol Biol. 1995;252:102–21.

    PubMed  CAS  Google Scholar 

  35. Evenas J, Forsen S, Malmendal A, Akke M. Backbone dynamics and energetics of a calmodulin domain mutant exchanging between closed and open conformations. J Mol Biol. 1999;289:603–17.

    PubMed  CAS  Google Scholar 

  36. Choe SY, Kim SJ, Kim HG, Lee JH, Choi Y, Lee H, et al. Evaluation of estrogenicity of major heavy metals. Sci Total Environ. 2003;312:15–21.

    PubMed  CAS  Google Scholar 

  37. Fechner P, Damdimopoulou P, Gauglitz G. Biosensors paving the way to understanding the interaction between cadmium and the estrogen receptor alpha. PLoS One. 2011;6:e23048.

    PubMed  CAS  Google Scholar 

  38. Rider CV, Hartig PC, Cardon MC, Wilson VS. Comparison of chemical binding to recombinant fathead minnow and human estrogen receptors alpha in whole cell and cell-free binding assays. Environ Toxicol Chem. 2009;28:2175–81.

    PubMed  CAS  Google Scholar 

  39. Martinez-Campa C, Alonso-Gonzalez C, Mediavilla MD, Cos S, Gonzalez A, Ramos S, et al. Melatonin inhibits both ER alpha activation and breast cancer cell proliferation induced by a metalloestrogen, cadmium. J Pineal Res. 2006;40:291–6.

    PubMed  CAS  Google Scholar 

  40. Siewit CL, Gengler B, Vegas E, Puckett R, Louie MC. Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ERalpha and c-Jun. Mol Endocrinol. 2010;24:981–92.

    PubMed  CAS  Google Scholar 

  41. Brama M, Gnessi L, Basciani S, Cerulli N, Politi L, Spera G, et al. Cadmium induces mitogenic signaling in breast cancer cell by an ERalpha-dependent mechanism. Mol Cell Endocrinol. 2007;264:102–8.

    PubMed  CAS  Google Scholar 

  42. Wilson VS, Bobseine K, Gray Jr LE. Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. Toxicol Sci. 2004;81:69–77.

    PubMed  CAS  Google Scholar 

  43. Liu Z, Yu X, Shaikh ZA. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium. Toxicol Appl Pharmacol. 2008;228:286–94.

    PubMed  CAS  Google Scholar 

  44. Zang Y, Odwin-Dacosta S, Yager JD. Effects of cadmium on estrogen receptor mediated signaling and estrogen induced DNA synthesis in T47D human breast cancer cells. Toxicol Lett. 2009;184:134–8.

    PubMed  CAS  Google Scholar 

  45. Silva E, Lopez-Espinosa MJ, Molina-Molina JM, Fernandez M, Olea N, Kortenkamp A. Lack of activity of cadmium in in vitro estrogenicity assays. Toxicol Appl Pharmacol. 2006;216:20–8.

    PubMed  CAS  Google Scholar 

  46. Zhang X, Wang Y, Zhao Y, Chen X. Experimental study on the estrogen-like effect of mercuric chloride. Biometals. 2008;21:143–50.

    PubMed  CAS  Google Scholar 

  47. Alonso-Gonzalez C, Gonzalez A, Mazarrasa O, Guezmes A, Sanchez-Mateos S, Martinez-Campa C, et al. Melatonin prevents the estrogenic effects of sub-chronic administration of cadmium on mice mammary glands and uterus. J Pineal Res. 2007;42:403–10.

    PubMed  CAS  Google Scholar 

  48. Hofer N, Diel P, Wittsiepe J, Wilhelm M, Degen GH. Dose- and route-dependent hormonal activity of the metalloestrogen cadmium in the rat uterus. Toxicol Lett. 2009;191:123–31.

    PubMed  Google Scholar 

  49. Liu J, Huang H, Zhang W, Li H. Cadmium-induced increase in uterine wet weight and its mechanism. Birth Defects Res B Dev Reprod Toxicol. 2010;89:43–9.

    PubMed  CAS  Google Scholar 

  50. Ali I, Penttinen-Damdimopoulou PE, Makela SI, Berglund M, Stenius U, Akesson A, et al. Estrogen-like effects of cadmium in vivo do not appear to be mediated via the classical estrogen receptor transcriptional pathway. Environ Health Perspect. 2010;118:1389–94.

    PubMed  CAS  Google Scholar 

  51. Ali I, Damdimopoulou P, Stenius U, Adamsson A, Makela SI, Akesson A, et al. Cadmium-induced effects on cellular signaling pathways in the liver of transgenic estrogen reporter mice. Toxicol Sci. 2012;127:66–75.

    PubMed  CAS  Google Scholar 

  52. Hofer N, Diel P, Wittsiepe J, Wilhelm M, Kluxen FM, Degen GH. Investigations on the estrogenic activity of the metallohormone cadmium in the rat intestine. Arch Toxicol. 2010;84:541–52.

    PubMed  Google Scholar 

  53. Zhang W, Yang J, Wang J, Xia P, Xu Y, Jia H, et al. Comparative studies on the increase of uterine weight and related mechanisms of cadmium and p-nonylphenol. Toxicology. 2007;241:84–91.

    PubMed  CAS  Google Scholar 

  54. Ramachandran B, Makela S, Cravedi JP, Berglund M, Hakansson H, Damdimopoulou P, et al. Estrogen-like effects of diet-derived cadmium differ from those of orally administered CdCl(2) in the ERE-luc estrogen reporter mouse model. Toxicol Lett. 2011;202:75–84.

    PubMed  CAS  Google Scholar 

  55. Kluxen FM, Hofer N, Kretzschmar G, Degen GH, Diel P. Cadmium modulates expression of aryl hydrocarbon receptor-associated genes in rat uterus by interaction with the estrogen receptor. Arch Toxicol. 2012;86:591–601.

    PubMed  CAS  Google Scholar 

  56. Padilla-Banks E, Jefferson WN, Newbold RR. The immature mouse is a suitable model for detection of estrogenicity in the uterotropic bioassay. Environ Health Perspect. 2001;109:821–6.

    PubMed  CAS  Google Scholar 

  57. Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, et al. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril. 2008;90:911–40.

    PubMed  CAS  Google Scholar 

  58. Schutte KH. The Biology of Trace Elements, Their Role in Nutrition. Philadelphia and Montreal: J.B. Lippincott Co.; 1964.

    Google Scholar 

  59. Krizek M, Senft V, Motan J. [Copper and the human body]. Cas Lek Cesk. 1997;136:698–701.

    PubMed  CAS  Google Scholar 

  60. Chan S, Gerson B, Subramaniam S. The role of copper, molybdenum, selenium, and zinc in nutrition and health. Clin Lab Med. 1998;18:673–85.

    PubMed  CAS  Google Scholar 

  61. Christianson DW, Cox JD. Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes. Annu Rev Biochem. 1999;68:33–57.

    PubMed  CAS  Google Scholar 

  62. Cantley Jr LC, Aisen P. The fate of cytoplasmic vanadium. Implications on [NA, K)-ATPase inhibition. J Biol Chem. 1979;254:1781–4.

    PubMed  CAS  Google Scholar 

  63. Chan PC, Peller OG, Kesner L. Copper(II)-catalyzed lipid peroxidation in liposomes and erythrocyte membranes. Lipids. 1982;17:331–7.

    PubMed  CAS  Google Scholar 

  64. Waalkes MP, Fox DA, States JC, Patierno SR, McCabe Jr MJ. Metals and disorders of cell accumulation: modulation of apoptosis and cell proliferation. Toxicol Sci. 2000;56:255–61.

    PubMed  CAS  Google Scholar 

  65. Hayes RB. The carcinogenicity of metals in humans. Cancer Causes Control. 1997;8:371–85.

    PubMed  CAS  Google Scholar 

  66. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans: some metals and metallic compounds. Vol. 23 ed. Lyon, France: 1980.

  67. Health assessment document for chromium. Washington, DC: US Environmental Proctection Agency; 1984.

  68. Chromiun. Washington, DC: National Academy of Sciences; 1974.

  69. Cadmium, nickel, some expoxides, miscellaneous industrial chemicals and general considerations on volatile anaesthetics. 11 ed. Lyons, France: International Agency for Research on Cancer, WHO; 1976.

  70. Nickel. Washington, DC: National Academy of Sciences; 1995.

  71. Gilman JPW, Smierenga SHH. Inorganic carcinogenesis. In: Searle CE, editor. Chemical carcinogens, ACS monograph no. 182, vol 1. 2 ed. Washington, DC: American Chemical Society; 1980. p. 577.

  72. Norseth T. The carcinogenicity of chromium. Environ Health Persp. 1981;40:121–30.

    CAS  Google Scholar 

  73. Barlow SM, Sullivan FM. Reproductive hazards and industrial chemicals. Ann Occup Hyg. 1981;24:359–61.

    PubMed  CAS  Google Scholar 

  74. Snow ET. Metal carcinogenesis: mechanistic implications. Pharmacol Ther. 1992;53:31–65.

    PubMed  CAS  Google Scholar 

  75. Kamamoto Y, Makiura S, Sugihara S, Hiasa Y, Arai M. The inhibitory effect of copper on DL-ethionine carcinogenesis in rats. Cancer Res. 1973;33:1129–35.

    PubMed  CAS  Google Scholar 

  76. Kensler TW, Bush DM, Kozumbo WJ. Inhibition of tumor promotion by a biomimetic superoxide dismutase. Science. 1983;221:75–7.

    PubMed  CAS  Google Scholar 

  77. Solanki V, Yotti L, Logani MK, Slaga TJ. The reduction of tumor initiating activity and cell mediated mutagenicity of dimethylbenz[a]anthracene by a copper coordination compound. Carcinogenesis. 1984;5:129–31.

    PubMed  CAS  Google Scholar 

  78. Gartell MJ, Craun JC, Podrebarae DS, Gunderson ER. Pesticides, selected elements and other chemicals in adult total diet samples. October 1980-March 1982. J Assoc. Anal Chem. 1986;69:146–61.

    Google Scholar 

  79. Gartell MJ, Craun JC, Podrebarae DS, Gunderson ER. Pesticides, selected elements and other chemicals in infant and toddler total diet samples. October 1980-March 1982. J Assoc. Anal Chem. 1986;69:123–45.

    Google Scholar 

  80. Moschandreas DJ, Karuchit S, Berry MR, O’Rourke MK, Lo D, Lebowitz MD, et al. Exposure apportionment: ranking food items by their contribution to dietary exposure. J Expo Anal Environ Epidemiol. 2002;12:233–43.

    PubMed  CAS  Google Scholar 

  81. Wilhelm M, Wittsiepe J, Schrey P, Budde U, Idel H. Dietary intake of cadmium by children and adults from Germany using duplicate portion sampling. Sci Total Environ. 2002;285:11–9.

    PubMed  CAS  Google Scholar 

  82. Muller M, Anke M, Illing-Gunther H, Thiel C. Oral cadmium exposure of adults in Germany. 2: Market basket calculations. Food Addit Contam. 1998;15:135–41.

    PubMed  CAS  Google Scholar 

  83. Ysart G, Miller P, Croasdale M, Crews H, Robb P, Baxter M, et al. 1997 UK Total Diet Study–dietary exposures to aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin and zinc. Food Addit Contam. 2000;17:775–86.

    PubMed  CAS  Google Scholar 

  84. Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure–a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24 Suppl 1:1–51.

    PubMed  Google Scholar 

  85. U.S. Environmental Protection Agency. Health assessment document of cadmium. Office of Research and Development, EPA-600/8-81, NTIS Pub. PB82-115163; 1981.

  86. Antila E, Mussalo-Rauhamaa H, Kantola M, Atroshi F, Westermarck T. Association of cadmium with human breast cancer. Sci Total Environ (Netherlands). 1996;186:251–6.

    CAS  Google Scholar 

  87. Lucis OJ, Lucis R, Shaikh ZA. Cadmium and zinc in pregnancy and lactation. Arch Environ Health. 1972;25:14–22.

    PubMed  CAS  Google Scholar 

  88. Sonawane BR, Nordberg M, Nordberg GF, Lucier GW. Placental transfer of cadmium in rats: influence of dose and gestational age. Environ Health Perspect. 1975;12:97–102.

    PubMed  CAS  Google Scholar 

  89. Schroeder HA, BALASSA JJ, Jr VINTON WH. Chromium, cadmium, and lead in rats: effects on life span, tumors and tissue levels. J Nutr. 1965;86:51–66.

    PubMed  CAS  Google Scholar 

  90. Lucas JM. Cadmium. Burea of Mines, US Department of the Interior. Bulletin 671; 1980.

  91. Nriagu JO. Lead in the atmosphere. In: Biogeochemistry of lead in the environment, part 1A. Amsterdam: Elsevier; 1978.

  92. Jung MC, Thornton I. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Sci Total Environ. 1997;198:105–21.

    PubMed  CAS  Google Scholar 

  93. Kazantzis G. Role of cobalt, iron, lead, manganese, mercury, platinum, selenium, and titanium in carcinogenesis. Environ Health Perspect. 1981;40:143–61.

    PubMed  CAS  Google Scholar 

  94. Rohr U, Senger M, Selenka F. [Effect of silver and copper ions on survival of Legionella pneumophila in tap water]. Zentralbl Hyg Umweltmed. 1996;198:514–21.

    PubMed  CAS  Google Scholar 

  95. Plockinger B, Dadak C, Meisinger V. [Lead, mercury and cadmium in newborn infants and their mothers]. Z Geburtshilfe Perinatol. 1993;197:104–7.

    PubMed  CAS  Google Scholar 

  96. Claye SS, Idouraine A, Weber CW. In vitro mineral binding capacity of five fiber sources and their insoluble components for copper and zinc. Plant Foods Hum Nutr. 1996;49:257–69.

    PubMed  CAS  Google Scholar 

  97. EPA. U.S. Environmental Protection Agency. Washington, DC: EPA; 1980.

    Google Scholar 

  98. Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT. Effects of micronutrients on metal toxicity. Environ Health Perspect. 1998;106 Suppl 1:203–16.

    PubMed  CAS  Google Scholar 

  99. Tamaya T, Nakata Y, Ohno Y, Nioka S, Furuta N. The mechanism of action of the copper intrauterine device. Fertil Steril. 1976;27:767–72.

    PubMed  CAS  Google Scholar 

  100. Wilhelm M, Lombeck I, Ohnesorge FK. Cadmium, copper, lead and zinc concentrations in hair and toenails of young children and family members: a follow-up study. Sci Total Environ. 1994;141:275–80.

    PubMed  CAS  Google Scholar 

  101. Cantor KP, Stewart PA, Brinton LA, Dosemeci M. Occupational exposures and female breast cancer mortality in the United States. J Occup Med. 1994;37:336–48.

    Google Scholar 

  102. Pollan M, Gustavvsson P. High-risk Occupations for breast cancer in Swedish female working population. Am J Public Health. 1999;89:875–81.

    PubMed  CAS  Google Scholar 

  103. McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA. Cadmium exposure and breast cancer risk. J Natl Cancer Inst. 2006;98:869–73.

    PubMed  CAS  Google Scholar 

  104. Gallagher CM, Chen JJ, Kovach JS. Environmental cadmium and breast cancer risk. Aging (Albany NY). 2010;2:804–14.

    CAS  Google Scholar 

  105. Julin B, Wolk A, Bergkvist L, Bottai M, Akesson A. Dietary cadmium exposure and risk of postmenopausal breast cancer: a population-based prospective cohort study. Cancer Res. 2012;72:1459–66.

    PubMed  CAS  Google Scholar 

  106. Akesson A, Julin B, Wolk A. Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res. 2008;68:6435–41.

    PubMed  CAS  Google Scholar 

  107. Jia ZG. Analysis of serum levels of selenium, zinc, and copper in 132 patients with malignant tumors. Zhonghua Yu Fang Yi Xue Za Zhi. 1991;25:205–7.

    PubMed  CAS  Google Scholar 

  108. Capel ID, Pinnock MH, Williams DC, Hanham IW. The serum levels of some trace and bulk elements in cancer patients. Oncology. 1982;39:38–41.

    PubMed  CAS  Google Scholar 

  109. Margalioth EJ, Schenker JG, Chevion M. Copper and zinc levels in normal and malignant tissues. Cancer. 1983;52:868–72.

    PubMed  CAS  Google Scholar 

  110. Vaidya SM, Kamalakar PL. Copper and ceruloplasmin levels in serum of women with breast cancer. Indian J Med Sci. 1998;52:184–7.

    PubMed  CAS  Google Scholar 

  111. Garofalo JA, Ashikari H, Lesser ML, Menendez-Botet C, Cunningham-Rundles S, Schwartz MK, et al. Serum zinc, copper, and the Cu/Zn ratio in patients with benign and malignant breast lesions. Cancer. 1980;46:2682–5.

    PubMed  CAS  Google Scholar 

  112. Gupta S, Shukla VK, Vaidya MP, Roy SK, Gupta S. Serum trace elements and Cu/Zn ratio in breast cancer. J Surg Oncol. 1991;46:178–81.

    PubMed  CAS  Google Scholar 

  113. Yenisey C, Fadiloglu M, Onvural B. Serum copper and ceruloplasmin concentrations in patients with primary breast cancer. Biochem Soc Trans. 1996;24:321S.

    PubMed  CAS  Google Scholar 

  114. Garland M, Morris JS, Colditz GA, Stampfer MJ, Spate VL, Baskett CK, et al. Toenail trace element levels and breast cancer: a prospective study. Am J Epidemiol. 1996;144:653–60.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Beth Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, C., Divekar, S.D., Storchan, G.B. et al. Metals and Breast Cancer. J Mammary Gland Biol Neoplasia 18, 63–73 (2013). https://doi.org/10.1007/s10911-013-9273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-013-9273-9

Keywords

Navigation