Skip to main content

Advertisement

Log in

Stat3 and the Inflammation/Acute Phase Response in Involution and Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The transcription factor Stat3 is essential for timely initiation of post-lactational regression and orchestrates the processes of cell death and tissue remodelling that occur during the first 6 days of involution in the mouse. Paradoxically, STAT3 is also frequently found to be constitutively active in breast cancer and tumors can become addicted to STAT3. This raises two interesting questions: 1) do the high levels of active Stat3 present in the mammary epithelium during involution promote tumor spread and 2) how do tumor cells escape the pro-apoptotic effects of Stat3? In order to address these questions, it is essential to understand the role of Stat3 in involution and the mechanisms by which Stat3 regulates both cell death and tissue remodelling. A number of studies have been undertaken using genetically modified mice and microarray analyses and two significant findings arose from these investigations. Firstly, post-lactational regression is associated with an acute phase and inflammatory response in addition to cell death and secondly, Stat3 alone is insufficient to induce involution in the absence of the NF-κB regulatory kinase IKKβ. Both Stat3 and NF-κB have been shown to regulate the expression of genes involved in inflammatory signalling and the acute phase response. These findings suggest a role for the innate immune response in mammary epithelial cell fate during involution and highlight potential roles for this response in tissue remodelling-associated breast cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Stat:

Signal transducer and activator of transcription

APR:

acute phase response

APRF:

acute phase response factor

APP:

acute phase protein

AIR:

anti-inflammatory response

IEC:

intestinal epithelial cells

DSS:

dextran sodium sulfate

AOM:

azoxymethane

APC:

antigen presenting cell

TAM:

tumor associated macrophage

DC:

dendritic cells

Treg:

regulatory T cell

Th:

T helper

EMT:

epithelial to mesenchymal transition

OSMR:

oncostatin M receptor

ORM:

orosomucoid

CRP:

C-reactive protein

SAA:

serum amyloid A

c/ebp:

CAAT-enhancer binding protein

Slpi:

secretory leukocyte protease inhibitor

References

  1. Kushner I, Mackiewicz A. The acute phase response: An overview. In: Mackiewicz A, Kushner I, Baumann H, editors. Acute phase proteins, molecular biology, biochemistry, and clinical applications. CRC; 1993. p. 3–19.

  2. Turkson J, Jove R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene. 2000;19(56):6613–26. doi:10.1038/sj.onc.1204086.

    Article  PubMed  CAS  Google Scholar 

  3. Kortylewski M, Jove R, Yu H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev. 2005;24(2):315–27. doi:10.1007/s10555-005-1580-1.

    Article  PubMed  CAS  Google Scholar 

  4. Chan KS, Sano S, Kiguchi K, Anders J, Komazawa N, Takeda J, et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J Clin Invest. 2004;114(5):720–8.

    PubMed  CAS  Google Scholar 

  5. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. Stat3 as an oncogene. Cell. 1999;98(3):295–303. doi:10.1016/S0092-8674(00)81959-5.

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Du H, Qin Y, Roberts J, Cummings OW, Yan C. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res. 2007;67(18):8494–503. doi:10.1158/0008-5472.CAN-07-0647.

    Article  PubMed  CAS  Google Scholar 

  7. Lund LR, Rømer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development. 1996;122(1):181–93.

    PubMed  CAS  Google Scholar 

  8. Noble MS, Hurley WL. Effects of secretion removal on bovine mammary gland function following an extended milk stasis. J Dairy Sci. 1999;82(8):1723–30.

    PubMed  CAS  Google Scholar 

  9. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999;13(19):2604–16. doi:10.1101/gad.13.19.2604.

    Article  PubMed  CAS  Google Scholar 

  10. Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L. Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology. 2002;143(9):3641–50. doi:10.1210/en.2002-220224.

    Article  PubMed  CAS  Google Scholar 

  11. Boland MP, Clarkson RW, Kritikou EA, Lee JM, Freeman TC, Tiffen PG, et al. The genes induced by signal transducer and activators of transcription (STAT) 3 and STAT5 in mammary epithelial cells define the roles of these STATs in mammary development. Mol Endocrinol. 2006;20(3):675–85.

    PubMed  Google Scholar 

  12. Tiffen PG, Omidvar N, Marquez-Almuina N, Croston D, Watson CJ, Clarkson RW. A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo. Mol Endocrinol. 2008;22(12):2677–88. doi:10.1210/me.2008-0097.

    Article  PubMed  CAS  Google Scholar 

  13. Thangaraju M, Rudelius M, Bierie B, Raffeld M, Sharan S, Hennighausen L, et al. C/EBPdelta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development. 2005;132(21):4675–85.

    Article  PubMed  CAS  Google Scholar 

  14. Sutherland KD, Vaillant F, Alexander WS, Wintermantel TM, Forrest NC, Holroyd SL, et al. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3. EMBO J. 2006;25(24):5805–15. doi:10.1038/sj.emboj.7601455.

    Article  PubMed  CAS  Google Scholar 

  15. Abell K, Bilancio A, Clarkson RW, Tiffen PG, Altaparmakov AI, Burdon TG, et al. Stat3-induced apoptosis requires a molecular switch in PI(3) K subunit composition. Nat Cell Biol. 2005;7(4):392–8. doi:10.1038/ncb1242.

    Article  PubMed  CAS  Google Scholar 

  16. Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004;6(2):R92–109. doi:10.1186/bcr754.

    Article  PubMed  CAS  Google Scholar 

  17. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res. 2004;6(2):R75–91. doi:10.1186/bcr753.

    Article  PubMed  CAS  Google Scholar 

  18. Poli V. The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J Biol Chem. 1998;273(45):29279–82. doi:10.1074/jbc.273.45.29279.

    Article  PubMed  CAS  Google Scholar 

  19. Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature. 1998;392:505–9. doi:10.1038/33169.

    Article  PubMed  CAS  Google Scholar 

  20. Alonzi T, Maritano D, Gorgoni B, Rizzuto G, Libert C, Poli V. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. Mol Cell Biol. 2001;21(5):1621–32. doi:10.1128/MCB.21.5.1621-1632.2001.

    Article  PubMed  CAS  Google Scholar 

  21. Atabai K, Fernandez RR, Huang X, Ueki I, Kline A, Li Y, et al. Mfge8 is critical for mammary gland remodeling during involution. Mol Biol Cell. 2005;16(12):5528–37. doi:10.1091/mbc.E05-02-0128.

    Article  PubMed  CAS  Google Scholar 

  22. Hanayama R, Nagata S. Impaired involution of mammary glands in the absence of milk fat globule EGF factor 8. Proc Natl Acad Sci USA. 2005;102(46):16886–91. doi:10.1073/pnas.0508599102.

    Article  PubMed  CAS  Google Scholar 

  23. Sordillo LM, Streicher KL. Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia. 2002;7(2):135–46. doi:10.1023/A:1020347818725.

    Article  PubMed  Google Scholar 

  24. Lee JW, Paape MJ, Elsasser TH, Zhao X. Elevated milk soluble CD14 in bovine mammary glands challenged with Escherichia coli lipopolysaccharide. J Dairy Sci. 2003;86(7):2382–9.

    Article  PubMed  CAS  Google Scholar 

  25. Labéta MO, Vidal K, Nores JE, Arias M, Vita N, Morgan BP, et al. Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14. J Exp Med. 2000;191(10):1807–12. doi:10.1084/jem.191.10.1807.

    Article  PubMed  Google Scholar 

  26. Hutt JA, O’Rourke JP, DeWille J. Signal transducer and activator of transcription 3 activates CCAAT enhancer-binding protein delta gene transcription in G0 growth-arrested mouse mammary epithelial cells and in involuting mouse mammary gland. J Biol Chem. 2000;275(37):29123–31. doi:10.1074/jbc.M004476200.

    Article  PubMed  CAS  Google Scholar 

  27. Yuste J, Botto M, Bottoms SE, Brown JS. Serum amyloid P aids complement-mediated immunity to Streptococcus pneumoniae. PLoS Pathog. 2007;3(9):1208–19. doi:10.1371/journal.ppat.0030120.

    Article  PubMed  CAS  Google Scholar 

  28. Colombo S, Buclin T, Decosterd LA, Telenti A, Furrer H, Lee BL, et al. Orosomucoid (alpha1-acid glycoprotein) plasma concentration and genetic variants: effects on human immunodeficiency virus protease inhibitor clearance and cellular accumulation. Clin Pharmacol Ther. 2006;80(4):307–18. doi:10.1016/j.clpt.2006.06.006.

    Article  PubMed  CAS  Google Scholar 

  29. Urien S, Bree F, Testa B, Tillement JP. pH-dependency of basic ligand binding to alpha 1-acid glycoprotein (orosomucoid). Biochem J. 1991;280(Pt 1):277–80.

    PubMed  CAS  Google Scholar 

  30. Urieli-Shoval S, Linke RP, Matzner Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr Opin Hematol. 2000;7(1):64–9. doi:10.1097/00062752-200001000-00012.

    Article  PubMed  CAS  Google Scholar 

  31. Schreiber G, Aldred AR. Extrahepatic synthesis of acute phase proteins. In: Mackiewicz A, Kushner, I. and Baumann, H., editor. Acute phase proteins, molecular biology, biochemistry, and clinical applications. CRC; 1993. p. 39–76.

  32. Thomas T, Fletcher S, Yeoh GC, Schreiber G. The expression of alpha(1)-acid glycoprotein mRNA during rat development. High levels of expression in the decidua. J Biol Chem. 1989;264(10):5784–90.

    PubMed  CAS  Google Scholar 

  33. Nilsen-Hamilton M, Liu Q, Ryon J, Bendickson L, Lepont P, Chang Q. Tissue involution and the acute phase response. Ann N Y Acad Sci. 2003;995:94–108.

    Article  PubMed  CAS  Google Scholar 

  34. Ng DC, Lin BH, Lim CP, Huang G, Zhang T, Poli V, et al. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J Cell Biol. 2006;172(2):245–57. doi:10.1083/jcb.200503021.

    Article  PubMed  CAS  Google Scholar 

  35. Sano S, Itami S, Takeda K, Tarutani M, Yamaguchi Y, Miura H, et al. Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J. 1999;18(17):4657–68. doi:10.1093/emboj/18.17.4657.

    Article  PubMed  CAS  Google Scholar 

  36. Pensa S, Regis G, Boselli D, Novelli F, Poli V. STAT1 and STAT3 in tumorigenesis: two sides of the same coin? In: Stephanou A, editor. JAK-STAT Pathway in Disease; 2008.

  37. Yamashita S, Miyagi C, Carmany-Rampey A, Shimizu T, Fujii R, Schier AF, et al. Stat3 controls cell movements during Zebrafish gastrulation. Dev Cell. 2002;2(3):363–75. doi:10.1016/S1534-5807(02)00126-0.

    Article  PubMed  CAS  Google Scholar 

  38. Wegenka UM, Buschmann J, Lutticken C, Heinrich PC, Horn F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol. 1993;13(1):276–88.

    PubMed  CAS  Google Scholar 

  39. El Kasmi KC, Holst J, Coffre M, Mielke L, de Pauw A, Lhocine N, et al. General nature of the STAT3-activated anti-inflammatory response. J Immunol. 2006;177(11):7880–8.

    PubMed  CAS  Google Scholar 

  40. Poli V, Alonzi T. STAT3 function in vivo. In: Seghal PB, Levy DE, Hirano T, editors. Signal Transducers and Activators of Transcription (STATs): activation and biology. Dordrecht, Boston, London: Kluwer Academic; 2003. p. 493–512.

    Google Scholar 

  41. Vallania F, Schiavone D, Dewilde S, Pupo E, Garbay S, Calogero R, et al. Genome-wide discovery of functional transcription factor binding sites by comparative genomics: The case of Stat3. Proc Natl Acad Sci U S A. 2009.

  42. Heikkila K, Ebrahim S, Lawlor DA. Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer. 2008;44(7):937–45. doi:10.1016/j.ejca.2008.02.047.

    Article  PubMed  CAS  Google Scholar 

  43. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15(2):91–102. doi:10.1016/j.ccr.2009.01.002.

    Article  PubMed  CAS  Google Scholar 

  44. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15(2):103–13. doi:10.1016/j.ccr.2009.01.001.

    Article  PubMed  CAS  Google Scholar 

  45. Ernst M, Najdovska M, Grail D, Lundgren-May T, Buchert M, Tye H, et al. STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice. J Clin Invest. 2008;118(5):1727–38.

    PubMed  CAS  Google Scholar 

  46. Bromberg J, Wang TC. Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell. 2009;15(2):79–80. doi:10.1016/j.ccr.2009.01.009.

    Article  PubMed  CAS  Google Scholar 

  47. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48–54. doi:10.1038/nm976.

    Article  PubMed  CAS  Google Scholar 

  48. Cheng F, Wang HW, Cuenca A, Huang M, Ghansah T, Brayer J, et al. A critical role for Stat3 signaling in immune tolerance. Immunity. 2003;19(3):425–36. doi:10.1016/S1074-7613(03)00232-2.

    Article  PubMed  CAS  Google Scholar 

  49. Matsumura Y, Kobayashi T, Ichiyama K, Yoshida R, Hashimoto M, Takimoto T, et al. Selective expansion of foxp3-positive regulatory T cells and immunosuppression by suppressors of cytokine signaling 3-deficient dendritic cells. J Immunol. 2007;179(4):2170–9.

    PubMed  CAS  Google Scholar 

  50. Burdelya L, Kujawski M, Niu G, Zhong B, Wang T, Zhang S, et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects. J Immunol. 2005;174(7):3925–31.

    PubMed  CAS  Google Scholar 

  51. Sun Z, Yao Z, Liu S, Tang H, Yan X. An oligonucleotide decoy for Stat3 activates the immune response of macrophages to breast cancer. Immunobiology. 2006;211(3):199–209. doi:10.1016/j.imbio.2005.11.004.

    Article  PubMed  CAS  Google Scholar 

  52. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med. 2005;11(12):1314–21. doi:10.1038/nm1325.

    Article  PubMed  CAS  Google Scholar 

  53. Niu G, Briggs J, Deng J, Ma Y, Lee H, Kortylewski M, et al. Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res. 2008;6(7):1099–105. doi:10.1158/1541-7786.MCR-07-2177.

    Article  PubMed  CAS  Google Scholar 

  54. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008;118(10):3367–77. doi:10.1172/JCI35213.

    Article  PubMed  CAS  Google Scholar 

  55. Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T, et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell. 2009;15(2):114–23. doi:10.1016/j.ccr.2008.12.018.

    Article  PubMed  CAS  Google Scholar 

  56. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H) 17 lineage. Nature. 2006;441(7090):231–4. doi:10.1038/nature04754.

    Article  PubMed  CAS  Google Scholar 

  57. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–89. doi:10.1016/j.immuni.2006.01.001.

    Article  PubMed  CAS  Google Scholar 

  58. Krause A, Scaletta N, Ji JD, Ivashkiv LB. Rheumatoid arthritis synoviocyte survival is dependent on Stat3. J Immunol. 2002;169(11):6610–6.

    PubMed  CAS  Google Scholar 

  59. Liu K, Liang C, Liang Z, Tus K, Wakeland EK. Sle1ab mediates the aberrant activation of STAT3 and Ras-ERK signaling pathways in B lymphocytes. J Immunol. 2005;174(3):1630–7.

    PubMed  CAS  Google Scholar 

  60. Simeone-Penney MC, Severgnini M, Tu P, Homer RJ, Mariani TJ, Cohn L, et al. Airway epithelial STAT3 is required for allergic inflammation in a murine model of asthma. J Immunol. 2007;178(10):6191–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ laboratories are funded by the Italian Cancer Research Association (AIRC), the Italian Ministery for University and Research (MIUR) COFIN and FIRB, the Progetto Alfieri (Fondazione CRT), the Biotechnology and Biological Sciences Research Council, the Association for International Cancer Research, The Wellcome Trust and the Breast Cancer Campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine J. Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pensa, S., Watson, C.J. & Poli, V. Stat3 and the Inflammation/Acute Phase Response in Involution and Breast Cancer. J Mammary Gland Biol Neoplasia 14, 121–129 (2009). https://doi.org/10.1007/s10911-009-9124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-009-9124-x

Keywords

Navigation