Skip to main content

Advertisement

Log in

Differentiation of the Mammary Epithelial Cell during Involution: Implications for Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

That milk secretion is not the final differentiated state of the mammary alveolar cells is a relatively new concept. Recent work has suggested that secreting, mammary epithelial cells (MECs) have another function to perform before they undergo cell death in the involuting mammary gland. That is, they help in the final clearance and breakdown of their neighboring cells (and likely residual milk as well.) They become, for a short time, amateur phagocytes, or efferocytes, and then are believed to die and be cleared themselves. Although relatively little study has been made of this change in the functional state of the MEC, nevertheless we may speculate from the involution literature, and extend findings from other systems of apoptotic cell clearance, on some of the mechanisms involved. And with the finding that involution may represent a unique susceptibility window for the progression of metastatic breast cancer, we may suggest areas for future research along these lines as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Akt/PKB:

v-akt murine thymoma viral oncogene homolog or protein kinase B

ATP6K:

ATPase, H + transporting lysosomal (vacuolar proton pump)

Axl:

AXL receptor tyrosine kinase

Bai1:

brain-specific angiogenesis inhibitor 1

Bax:

BCL2-associated X protein

Bcl-2:

B-cell CLL/lymphoma 2

Beclin-1/ATG6:

coiled-coil, moesin-like BCL2 interacting protein or autophagy related 6 homolog

Bid:

BH3 interacting domain death agonist

BMDM:

bone marrow-derived macrophages

BMEC:

bovine mammary epithelial cells

CD11c/ITGAX:

integrin, alpha X (complement component 3 receptor 4 subunit)

CD14:

monocyte differentiation antigen CD14

CD169/SIGLEC1:

sialic acid binding Ig-like lectin 1, sialoadhesin

CD206/MRC1:

mannose receptor, C type 1

CD31/PECAM1:

platelet/endothelial cell adhesion molecule

CD36:

cluster determinant 36 or thrombospondin receptor

CD44:

cell surface glycoprotein CD44 (Indian Blood Group)

CD63a:

melanoma 1 antigen

CD68a:

macrophage antigen CD68 or macrosialin or scavenger receptor class D, member 1

CDK4:

cyclin-dependent kinase 4

Cre:

Cre recombinase, a Type I topoisomerase from P1 bacteriophage that catalyzes site-specific recombination of DNA between loxP sites

CSF1R /Csfmr/CD115:

macrophage colony stimulating factor I receptor

CXCL10:

chemokine (C-X-C motif) ligand 10 or interferon-inducible cytokine IP-10

ECF-L/Ym-1/Chi3l3:

eosinophil chemotactic factor-L or chitinase 3-like 3

ECM:

extracellular matrix

EGF:

epidermal growth factor

EMT:

epithelial to mesenchymal transition

F4/80/EMR1:

cell surface glycoprotein F4/80 or EGF-like module containing, mucin-like, hormone receptor-like sequence 1

FBS:

fetal bovine serum

FGF:

fibroblast growth factor

Gas6:

growth arrest-specific 6

Gr-1/Ly-6g:

lymphocyte antigen 6 complex, locus G

HPV:

human papillomavirus

IAP/CD47a:

CD47 antigen or Rh-related antigen or integrin-associated signal transducer

IGFBP5:

insulin-like growth factor binding protein 5

iNOS/NOS-2:

inducible nitric oxide synthase

Invo1:

involution day 1 or 24 h post-forced-weaning

Invo4:

involution day four

LAMP2:

lysosomal-associated membrane protein 2

LGP85/CD36l2/LIMP-2/SCARB2:

85 kDa lysosomal sialoglycoprotein scavenger receptor class B, member 2 or (collagen type I receptor, thrombospondin receptor)-like 2 or lysosomal integral membrane protein II or scavenger receptor class B, member 2

LPS:

lipopolysaccharide

LRP/CD91/A2MR:

low density lipoprotein-related protein or alpha 2-macroglobulin receptor

Ly112/Scara2/MARCO:

scavenger receptor class A, member 2 or macrophage receptor with collagenous structure

Ly-6c:

lymphocyte antigen 6 complex, locus C1

M1 macrophage:

classically activated macrophage

M2 macrophage:

alternatively activated macrophage

Mac-1/CD11b/CR3/Ly-40/Itgam:

complement component receptor 3, alpha or integrin alpha M

Mac2/galectin-3/LGALS3:

lectin, galactoside-binding, soluble, 3 or IgE-binding protein or laminin-binding protein

Map1lc3:

microtubule-associated protein 1 light chain 3 beta

MAPK:

mitogen-activated protein kinase

MEC:

mammary epithelial cell

MerTK:

c-mer proto-oncogene tyrosine kinase

MFG-E8:

milk fat globule-EGF factor 8 protein or lactadherin

MMP:

matrix metalloproteinase

MMTV-Neu:

expression of the Neu oncogene (HER2/ErbB2) using the mouse mammary tumor virus LTR promoter

MMTV-Wnt:

the protooncogene, wingless-related MMTV integration site 1, expressed using the mouse mammary tumor virus LTR promoter

mTOR/FRAP1:

mammalian target of rapamycin or FK506 binding protein 12-rapamycin associated protein 1

MyD88:

myeloid differentiation primary response gene (88)

Myr-Akt:

myristoylated Akt

NF-κB:

nuclear factor of kappa light polypeptide gene enhancer in B-cells

Npt2b:

Na–Pi type IIb co-transporter

PCD:

programmed cell death

PI3K:

phosphoinositide 3-kinase

PiMEC:

parity-identified mammary epithelial cell (previously parity-induced)

ProS1:

protein S, alpha or vitamin K-dependent plasma protein S

PtdSer:

phosphatidylserine

PTEN:

phosphatase and tensin homolog

RAG-1:

recombination-activating gene-1

ROSA-LacZ:

reporter transgene utilizing a floxed transcriptional Stop sequence between the Rosa promoter and the beta-galactosidase (LacZ) coding sequence

SOCS3:

suppressor of cytokine signaling 3

Stat5:

signal transducer and activator of transcription 5

TAM:

tumor-associated macrophage

TβRII:

transforming growth factor, beta receptor II

TGFβ:

transforming growth factor beta

Thbs1:

thrombospondin 1

Tim4:

T-cell immunoglobulin and mucin domain containing 4

TIMP3:

tissue-inhibitor of metalloproteinase 3

TMEM4/CNPY2:

MIR-interacting saposin-like protein or canopy 2 homolog or transmembrane protein 4

TNF:

tumor necrosis factor

TWEAK/Tnfsf12:

tumor necrosis factor-like weak inducer of apoptosis or tumor necrosis factor (ligand) superfamily, member 12

Tyro3:

TYRO3 protein tyrosine kinase 3

UPA:

urokinase plasminogen activator

VEGF:

vascular endothelial growth factor

WAP:

whey acidic protein

References

  1. D'Cruz CM, Moody SE, Master SR, Hartman JL, Keiper EA, Imielinski MB, et al. Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol. 2002;16(9):2034–51. doi:10.1210/me.2002-0073.

    Article  PubMed  Google Scholar 

  2. Balogh GA, Heulings R, Mailo DA, Russo PA, Sheriff F, Russo IH, et al. Genomic signature induced by pregnancy in the human breast. Int J Oncol. 2006;28(2):399–410.

    PubMed  CAS  Google Scholar 

  3. Schedin P. Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer. 2006;6(4):281–91. doi:10.1038/nrc1839.

    Article  PubMed  CAS  Google Scholar 

  4. Maroulakou IG, Oemler W, Naber SP, Klebba I, Kuperwasser C, Tsichlis PN. Distinct roles of the three Akt isoforms in lactogenic differentiation and involution. J Cell Physiol. 2008;217(2):468–77. doi:10.1002/jcp.21518.

    Article  PubMed  CAS  Google Scholar 

  5. Cabodi S, Tinnirello A, Di Stefano P, Bisaro B, Ambrosino E, Castellano I, et al. p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis. Cancer Res. 2006;66(9):4672–80. doi:10.1158/0008-5472.CAN-05-2909.

    Article  PubMed  CAS  Google Scholar 

  6. Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM, et al. Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene. 2006;25(24):3408–23. doi:10.1038/sj.onc.1208964.

    Article  PubMed  CAS  Google Scholar 

  7. Abell K, Bilancio A, Clarkson RW, Tiffen PG, Altaparmakov AI, Burdon TG, et al. Stat3-induced apoptosis requires a molecular switch in PI(3) K subunit composition. Nat Cell Biol. 2005;7(4):392–8. doi:10.1038/ncb1242.

    Article  PubMed  CAS  Google Scholar 

  8. Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res. 2003;44(6):1100–12. doi:10.1194/jlr.M300045-JLR200.

    Article  PubMed  CAS  Google Scholar 

  9. Moorehead RA, Fata JE, Johnson MB, Khokha R. Inhibition of mammary epithelial apoptosis and sustained phosphorylation of Akt/PKB in MMTV-IGF-II transgenic mice. Cell Death Differ. 2001;8(1):16–29. doi:10.1038/sj.cdd.4400762.

    Article  PubMed  CAS  Google Scholar 

  10. Renner O, Blanco-Aparicio C, Grassow M, Canamero M, Leal JF, Carnero A. Activation of phosphatidylinositol 3-kinase by membrane localization of p110alpha predisposes mammary glands to neoplastic transformation. Cancer Res. 2008;68(23):9643–53. doi:10.1158/0008-5472.CAN-08-1539.

    Article  PubMed  CAS  Google Scholar 

  11. Sharp JA, Lefevre C, Brennan AJ, Nicholas KR. The fur seal-a model lactation phenotype to explore molecular factors involved in the initiation of apoptosis at involution. J Mammary Gland Biol Neoplasia. 2007;12(1):47–58. doi:10.1007/s10911-007-9037-5.

    Article  PubMed  Google Scholar 

  12. Lemay DG, Neville MC, Rudolph MC, Pollard KS, German JB. Gene regulatory networks in lactation: identification of global principles using bioinformatics. BMC Syst Biol. 2007;1:56. doi:10.1186/1752-0509-1-56.

    Article  PubMed  Google Scholar 

  13. Sutherland KD, Lindeman GJ, Visvader JE. The molecular culprits underlying precocious mammary gland involution. J Mammary Gland Biol Neoplasia. 2007;12(1):15–23. doi:10.1007/s10911-007-9034-8.

    Article  PubMed  Google Scholar 

  14. Stein T, Salomonis N, Gusterson BA. Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia. 2007;12(1):25–35. doi:10.1007/s10911-007-9035-7.

    Article  PubMed  Google Scholar 

  15. Baxter FO, Neoh K, Tevendale MC. The beginning of the end: death signaling in early involution. J Mammary Gland Biol Neoplasia. 2007;12(1):3–13. doi:10.1007/s10911-007-9033-9.

    Article  PubMed  Google Scholar 

  16. Monks J, Smith-Steinhart C, Kruk ER, Fadok VA, Henson PM. Epithelial cells remove apoptotic epithelial cells during post-lactation involution of the mouse mammary gland. Biol Reprod. 2008;78(4):586–94. doi:10.1095/biolreprod.107.065045.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenblatt J, Raff MC, Cramer LP. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol. 2001;11(23):1847–57. doi:10.1016/S0960-9822(01)00587-5.

    Article  PubMed  CAS  Google Scholar 

  18. Erwig LP, Henson PM. Clearance of apoptotic cells by phagocytes. Cell Death Differ. 2008;15(2):243–50. doi:10.1038/sj.cdd.4402184.

    Article  PubMed  CAS  Google Scholar 

  19. Monks J, Rosner D, Geske FJ, Lehman L, Hanson L, Neville MC, et al. Epithelial cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. Cell Death Differ. 2005;12(2):107–14. doi:10.1038/sj.cdd.4401517.

    Article  PubMed  CAS  Google Scholar 

  20. Freire-de-Lima CG, Xiao YQ, Gardai SJ, Bratton DL, Schiemann WP, Henson PM. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem. 2006;281(50):38376–84. doi:10.1074/jbc.M605146200.

    Article  PubMed  CAS  Google Scholar 

  21. Andrechek ER, Mori S, Rempel RE, Chang JT, Nevins JR. Patterns of cell signaling pathway activation that characterize mammary development. Development. 2008;135(14):2403–13. doi:10.1242/dev.019018.

    Article  PubMed  CAS  Google Scholar 

  22. Tiffen PG, Omidvar N, Marquez-Almuina N, Croston D, Watson CJ, Clarkson RW. A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo. Mol Endocrinol. 2008;22(12):2677–88. doi:10.1210/me.2008-0097.

    Article  PubMed  CAS  Google Scholar 

  23. Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia. 2003;8(3):287–307. doi:10.1023/B:JOMG.0000010030.73983.57.

    Article  PubMed  Google Scholar 

  24. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res. 2004;6(2):R75–91. doi:10.1186/bcr753.

    Article  PubMed  CAS  Google Scholar 

  25. Bratton DL, Henson PM. Apoptotic cell recognition: will the real phosphatidylserine receptor(s) please stand up? Curr Biol. 2008;18(2):R76–9. doi:10.1016/j.cub.2007.11.024.

    Article  PubMed  CAS  Google Scholar 

  26. Nakatani H, Aoki N, Nakagawa Y, Jin-No S, Aoyama K, Oshima K, et al. Weaning-induced expression of a milk-fat globule protein, MFG-E8, in mouse mammary glands, as demonstrated by the analyses of its mRNA, protein and phosphatidylserine-binding activity. Biochem J. 2006;395(1):21–30. doi:10.1042/BJ20051459.

    Article  PubMed  CAS  Google Scholar 

  27. Oshima K, Aoki N, Negi M, Kishi M, Kitajima K, Matsuda T. Lactation-dependent expression of an mRNA splice variant with an exon for a multiply O-glycosylated domain of mouse milk fat globule glycoprotein MFG-E8. Biochem Biophys Res Commun. 1999;254(3):522–8. doi:10.1006/bbrc.1998.0107.

    Article  PubMed  CAS  Google Scholar 

  28. Erwig LP, McPhilips KA, Wynes MW, Ivetic A, Ridley AJ, Henson PM. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci USA. 2006;103(34):12825–30. doi:10.1073/pnas.0605331103.

    Article  PubMed  CAS  Google Scholar 

  29. Green KA, Lund LR. ECM degrading proteases and tissue remodelling in the mammary gland. Bioessays. 2005;27(9):894–903. doi:10.1002/bies.20281.

    Article  PubMed  CAS  Google Scholar 

  30. Hu L, Roth JM, Brooks P, Luty J, Karpatkin S. Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis. Cancer Res. 2008;68(12):4666–73. doi:10.1158/0008-5472.CAN-07-6276.

    Article  PubMed  CAS  Google Scholar 

  31. Castino R, Delpal S, Bouguyon E, Demoz M, Isidoro C, Ollivier-Bousquet M. Prolactin promotes the secretion of active cathepsin D at the basal side of rat mammary acini. Endocrinology. 2008;149(8):4095–105. doi:10.1210/en.2008-0249.

    Article  PubMed  CAS  Google Scholar 

  32. Berchem G, Glondu M, Gleizes M, Brouillet JP, Vignon F, Garcia M, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21(38):5951–5. doi:10.1038/sj.onc.1205745.

    Article  PubMed  CAS  Google Scholar 

  33. Khalkhali-Ellis Z, Hendrix MJ. Elucidating the function of secreted maspin: inhibiting cathepsin D-mediated matrix degradation. Cancer Res. 2007;67(8):3535–9. doi:10.1158/0008-5472.CAN-06-4767.

    Article  PubMed  CAS  Google Scholar 

  34. Lamparska-Przybysz M, Gajkowska B, Motyl T. Cathepsins and BID are involved in the molecular switch between apoptosis and autophagy in breast cancer MCF-7 cells exposed to camptothecin. J Physiol Pharmacol. 2005;56(Suppl 3):159–79.

    PubMed  Google Scholar 

  35. Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, et al. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006;237(2):167–79. doi:10.1016/j.canlet.2005.06.007.

    Article  PubMed  CAS  Google Scholar 

  36. Motyl T, Gajkowska B, Zarzynska J, Gajewska M, Lamparska-Przybysz M. Apoptosis and autophagy in mammary gland remodeling and breast cancer chemotherapy. J Physiol Pharmacol. 2006;57(Suppl 7):17–32.

    PubMed  Google Scholar 

  37. Atabai K, Sheppard D, Werb Z. Roles of the innate immune system in mammary gland remodeling during involution. J Mammary Gland Biol Neoplasia. 2007;12(1):37–45. doi:10.1007/s10911-007-9036-6.

    Article  PubMed  Google Scholar 

  38. Motyl T, Gajewska M, Zarzynska J, Sobolewska A, Gajkowska B. Regulation of autophagy in bovine mammary epithelial cells. Autophagy. 2007;3(5):484–6.

    PubMed  CAS  Google Scholar 

  39. Capuco AV, Li M, Long E, Ren S, Hruska KS, Schorr K, et al. Concurrent pregnancy retards mammary involution: effects on apoptosis and proliferation of the mammary epithelium after forced weaning of mice. Biol Reprod. 2002;66(5):1471–6. doi:10.1095/biolreprod66.5.1471.

    Article  PubMed  CAS  Google Scholar 

  40. Sobolewska A, Gajewska M, Zarzynska J, Gajkowska B, Motyl T. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. Eur J Cell Biol. 2009;88(2):117–30. doi:10.1016/j.ejcb.2008.09.004.

    Article  PubMed  CAS  Google Scholar 

  41. Reinhardt TA, Lippolis JD. Mammary gland involution is associated with rapid down regulation of major mammary Ca2 + -ATPases. Biochem Biophys Res Commun. 2009;378(1):99–102. doi:10.1016/j.bbrc.2008.11.004.

    Article  PubMed  CAS  Google Scholar 

  42. Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med. 2005;258(6):479–517. doi:10.1111/j.1365-2796.2005.01570.x.

    Article  PubMed  CAS  Google Scholar 

  43. Zheng J, Watson AD, Kerr DE. Genome-wide expression analysis of lipopolysaccharide-induced mastitis in a mouse model. Infect Immun. 2006;74(3):1907–15. doi:10.1128/IAI.74.3.1907-1915.2006.

    Article  PubMed  CAS  Google Scholar 

  44. Zaragoza R, Miralles VJ, Rus AD, Garcia C, Carmena R, Garcia-Trevijano ER, et al. Weaning induces NOS-2 expression through NF-kappaB modulation in the lactating mammary gland: importance of GSH. Biochem J. 2005;391(Pt 3):581–8. doi:10.1042/BJ20050507.

    PubMed  CAS  Google Scholar 

  45. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30(8):1482–91. doi:10.1016/j.biomaterials.2008.11.040.

    Article  PubMed  CAS  Google Scholar 

  46. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6. doi:10.1016/j.cell.2006.01.007.

    Article  PubMed  CAS  Google Scholar 

  47. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66(2):605–12. doi:10.1158/0008-5472.CAN-05-4005.

    Article  PubMed  CAS  Google Scholar 

  48. Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. Cancer Lett. 2008;267(2):204–15. doi:10.1016/j.canlet.2008.03.028.

    Article  PubMed  CAS  Google Scholar 

  49. Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophage polarization in tumour progression. Semin Cancer Biol. 2008;18(5):349–55. doi:10.1016/j.semcancer.2008.03.004.

    Article  PubMed  CAS  Google Scholar 

  50. Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222:155–61. doi:10.1111/j.1600-065X.2008.00607.x.

    Article  PubMed  CAS  Google Scholar 

  51. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis. 2004;25(8):1543–9. doi:10.1093/carcin/bgh146.

    Article  PubMed  CAS  Google Scholar 

  52. Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol. 2008;84(3):623–30. doi:10.1189/jlb.1107762.

    Article  PubMed  CAS  Google Scholar 

  53. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, et al. "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med. 2008;205(6):1261–8. doi:10.1084/jem.20080108.

    Article  PubMed  CAS  Google Scholar 

  54. Sutherland KD, Vaillant F, Alexander WS, Wintermantel TM, Forrest NC, Holroyd SL, et al. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3. EMBO J. 2006;25(24):5805–15. doi:10.1038/sj.emboj.7601455.

    Article  PubMed  CAS  Google Scholar 

  55. Ning Y, Hoang B, Schuller AG, Cominski TP, Hsu MS, Wood TL, et al. Delayed mammary gland involution in mice with mutation of the insulin-like growth factor binding protein 5 gene. Endocrinology. 2007;148(5):2138–47. doi:10.1210/en.2006-0041.

    Article  PubMed  CAS  Google Scholar 

  56. Fata JE, Leco KJ, Voura EB, Yu HY, Waterhouse P, Murphy G, et al. Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Invest. 2001;108(6):831–41.

    PubMed  CAS  Google Scholar 

  57. Schwertfeger KL, Richert MM, Anderson SM. Mammary gland involution is delayed by activated Akt in transgenic mice. Mol Endocrinol. 2001;15(6):867–81. doi:10.1210/me.15.6.867.

    Article  PubMed  CAS  Google Scholar 

  58. Atabai K, Fernandez R, Huang X, Ueki I, Kline A, Li Y, et al. Mfge8 is critical for mammary gland remodeling during involution. Mol Biol Cell. 2005;16(12):5528–37. doi:10.1091/mbc.E05-02-0128.

    Article  PubMed  CAS  Google Scholar 

  59. Hanayama R, Nagata S. Impaired involution of mammary glands in the absence of milk fat globule EGF factor 8. Proc Natl Acad Sci USA. 2005;102(46):16886–91. doi:10.1073/pnas.0508599102.

    Article  PubMed  CAS  Google Scholar 

  60. Muraoka-Cook RS, Sandah M, Hunter DM, Strunk KE, Williams JC, Matsushima GK, Graham DK, Earp HS III. Stromal and epithelial expression of MerTK, but not Axl or Tyro3, regulates apoptotic cell clearance and prevents premalignant changes in the mammary epithelium. in press 2009.

  61. Raymond A, Ensslin MA, Shur BD. SED1/MFG-E8: A Bi-Motif protein that orchestrates diverse cellular interactions. J Cell Biochem. 2009;106(6):957–66. doi:10.1002/jcb.22076.

    Article  PubMed  CAS  Google Scholar 

  62. Toth B, Garabuczi E, Sarang Z, Vereb G, Vamosi G, Aeschlimann D, et al. Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol. 2009;182(4):2084–92. doi:10.4049/jimmunol.0803444.

    Article  PubMed  CAS  Google Scholar 

  63. Bu HF, Zuo XL, Wang X, Ensslin MA, Koti V, Hsueh W, et al. Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Invest. 2007;117(12):3673–83.

    PubMed  CAS  Google Scholar 

  64. Prasad D, Rothlin CV, Burrola P, Burstyn-Cohen T, Lu Q, de Frutos P Garcia, et al. TAM receptor function in the retinal pigment epithelium. Mol Cell Neurosci. 2006;33(1):96–108. doi:10.1016/j.mcn.2006.06.011

    Article  PubMed  CAS  Google Scholar 

  65. Seitz HM, Camenisch TD, Lemke G, Earp HS, Matsushima GK. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J Immunol. 2007;178(9):5635–42.

    PubMed  CAS  Google Scholar 

  66. Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat Rev Immunol. 2008;8(5):327–36. doi:10.1038/nri2303.

    Article  PubMed  CAS  Google Scholar 

  67. Bierie B, Gorska AE, Stover DG, Moses HL. TGF-beta promotes cell death and suppresses lactation during the second stage of mammary involution. J Cell Physiol. 2009;219(1):57–68. doi:10.1002/jcp.21646.

    Article  PubMed  CAS  Google Scholar 

  68. Booth BW, Boulanger CA, Smith GH. Stem cells and the mammary microenvironment. Breast Dis. 2008;29:57–67.

    PubMed  Google Scholar 

  69. Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129(6):1377–86.

    PubMed  CAS  Google Scholar 

  70. Matulka LA, Triplett AA, Wagner KU. Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol. 2007;303(1):29–44. doi:10.1016/j.ydbio.2006.12.017.

    Article  PubMed  CAS  Google Scholar 

  71. Polyak K, Hahn WC. Roots and stems: stem cells in cancer. Nat Med. 2006;12(3):296–300. doi:10.1038/nm1379.

    Article  PubMed  CAS  Google Scholar 

  72. Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene. 2004;23(41):6980–5. doi:10.1038/sj.onc.1207827.

    Article  PubMed  CAS  Google Scholar 

  73. Franchi L, Warner N, Viani K, Nunez G. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev. 2009;227(1):106–28. doi:10.1111/j.1600-065X.2008.00734.x.

    Article  PubMed  Google Scholar 

  74. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37. doi:10.1038/nrc1782.

    Article  PubMed  Google Scholar 

  75. Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer. 2008;8(5):377–86. doi:10.1038/nrc2371.

    Article  PubMed  CAS  Google Scholar 

  76. Baxter FO, Came PJ, Abell K, Kedjouar B, Huth M, Rajewsky K, et al. IKKbeta/2 induces TWEAK and apoptosis in mammary epithelial cells. Development. 2006;133(17):3485–94. doi:10.1242/dev.02502.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the help of Colin Monks and Ben FranzDale (Intelligent Imaging Innovations, Inc.) for 3D imaging/spherical aberration correction, and for ray-trace, volumetric rendering, respectively. We would like to thank Dr. H. Shelton Earp III for letting us preview the MerTK manuscript. The authors would like to extend sincere apologies to any colleagues whose work we missed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenifer Monks.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1 Movie 1

Mammary gland collected at day 1.5 post-wean, frozen section stained with M30 cytodeath (shown in green), phalloidin (red) and Hoechst (blue). 149 planes, at a spacing of 0.2 microns were collected. The movie shows every other optical section of collected data (MOV 4.95 mb)

Fig. S1 Movie 2

Volumetric rendering of the data in A, after constrained iterative deconvolution. Shown is rotation from −30 to 210 degrees (MOV 9.94 mb)

Movie showing a rotation of dynamically lit, ray-trace, volumetric rendering of deconvolved mammary gland data. Phalloidin staining is shown at 88% opacity to allow viewing of internal structures. The angle of the light source is shown by the arrow in the top right, and the angle of viewing is shown by the axes in the lower left. Acknowledgment: Ben FranzDale, Intelligent Imaging Innovations, for ray-trace, volumetric rendering (MOV 4.64 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monks, J., Henson, P.M. Differentiation of the Mammary Epithelial Cell during Involution: Implications for Breast Cancer. J Mammary Gland Biol Neoplasia 14, 159–170 (2009). https://doi.org/10.1007/s10911-009-9121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-009-9121-0

Keywords

Navigation