Skip to main content

Advertisement

Log in

Cellular Quiescence in Mammary Stem Cells and Breast Tumor Stem Cells: Got Testable Hypotheses?

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Cellular quiescence is a state of reversible cell cycle arrest and has more recently been shown to be a blockade to differentiation and to correlate with resistance to cancer chemotherapeutics and other xenobiotics; features that are common to adult stem cells and possibly tumor stem cells. The biphasic kinetics of mammary regeneration, coupled to its cyclic endocrine control suggest that mammary stem cells most likely divide during a narrow window of the regenerative cycle and return to a state of quiescence. This would enable them to retain their proliferative capacity, resist differentiation signals and preserve their prolonged life span. There is accumulating evidence that mammary stem cells and other adult stem cells utilize quiescence for this purpose, however the degree to which tumor stem cells do so is largely unknown. The retained proliferative capacity of mammary stem cells likely enables them to accumulate and harbor mutations that lead to breast cancer initiation. However it is currently unclear if these causative lesions lead to defective or deranged quiescence in mammary stem cells. Evidence of such effects could potentially lead to the development of diagnostic systems that monitor mammary stem cell quiescence or activation. Such systems may be useful for the evaluation of patients who are at significant risk of breast cancer. Additionally quiescence has been postulated to contribute to therapeutic resistance and tumor recurrence. This review aims to evaluate what is known about the mechanisms governing cellular quiescence and the role of tumor stem cell quiescence in breast cancer recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

DREAM:

DP, RB-like, E2F, and MuvB

SDERG:

Serum deprivation early response gene

FGF:

Fibroblast growth factor

ABCG:

ATP-binding cassette proteins, sub-group G

BrdU:

Bromodeoxyuridine

EGFR:

Epidermal growth factor receptor

References

  1. Stingl J, Raouf A, Eirew P, Eaves CJ. Deciphering the mammary epithelial cell hierarchy. Cell Cycle. 2006;5(14):1519–22.

    PubMed  CAS  Google Scholar 

  2. Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8. doi:10.1038/nature04372.

    Article  PubMed  CAS  Google Scholar 

  3. Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–7.

    PubMed  CAS  Google Scholar 

  4. Giebel B. Cell polarity and asymmetric cell division within human hematopoietic stem and progenitor cells. Cells Tissues Organs. 2008;188(1–2):116–26. doi:10.1159/000112842.

    Article  PubMed  Google Scholar 

  5. Lin H. Cell biology of stem cells: an enigma of asymmetry and self-renewal. J Cell Biol. 2008;180(2):257–60. doi:10.1083/jcb.200712159.

    Article  PubMed  CAS  Google Scholar 

  6. Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol. 2006;4(3):e83. doi:10.1371/journal.pbio.0040083.

    Article  PubMed  CAS  Google Scholar 

  7. Sang L, Coller HA, Roberts JM. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science. 2008;321(5892):1095–100. doi:10.1126/science.1155998.

    Article  PubMed  CAS  Google Scholar 

  8. Barker N, van de Wetering M, Clevers H. The intestinal stem cell. Genes Dev. 2008;22(14):1856–64. doi:10.1101/gad.1674008.

    Article  PubMed  CAS  Google Scholar 

  9. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50. doi:10.1038/nature03319.

    Article  PubMed  CAS  Google Scholar 

  10. Moll I, Zieger W, Schmelz M. Proliferative Merkel cells were not detected in human skin. Arch Dermatol Res. 1996;288(4):184–7. doi:10.1007/BF02505222.

    Article  PubMed  CAS  Google Scholar 

  11. Davenport A, Hale RJ, Hunt CR, Bigley G, McMahon RF. Expression of Ki-67 and cytokeratin 20 in hyperplastic polyps of the colorectum. J Clin Pathol. 2003;56(3):200–4. doi:10.1136/jcp.56.3.200.

    Article  PubMed  CAS  Google Scholar 

  12. Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science. 2005;309(5738):1253–6. doi:10.1126/science.1115025.

    Article  PubMed  CAS  Google Scholar 

  13. Yasumoto S, Kunimura C, Kikuchi K, et al. Telomerase activity in normal human epithelial cells. Oncogene. 1996;13(2):433–9.

    PubMed  CAS  Google Scholar 

  14. Sarin KY, Cheung P, Gilison D, et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature. 2005;436(7053):1048–52. doi:10.1038/nature03836.

    Article  PubMed  CAS  Google Scholar 

  15. Smalley M, Ashworth A. Stem cells and breast cancer: a field in transit. Nat Rev Cancer. 2003;3(11):832–44. doi:10.1038/nrc1212.

    Article  PubMed  CAS  Google Scholar 

  16. Kolquist KA, Ellisen LW, Counter CM, et al. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat Genet. 1998;19(2):182–6. doi:10.1038/554.

    Article  PubMed  CAS  Google Scholar 

  17. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002;245(1):42–56. doi:10.1006/dbio.2002.0625.

    Article  PubMed  CAS  Google Scholar 

  18. Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J Cell Sci. 2005;118(Pt 16):3585–94. doi:10.1242/jcs.02532.

    Article  PubMed  CAS  Google Scholar 

  19. Horsley V, Aliprantis AO, Polak L, Glimcher LH, Fuchs E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell. 2008;132(2):299–310. doi:10.1016/j.cell.2007.11.047.

    Article  PubMed  CAS  Google Scholar 

  20. Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol. 2003;163(3):609–23. doi:10.1083/jcb.200309042.

    Article  PubMed  CAS  Google Scholar 

  21. Suda T, Arai F, Hirao A. Hematopoietic stem cells and their niche. Trends Immunol. 2005;26(8):426–33. doi:10.1016/j.it.2005.06.006.

    Article  PubMed  CAS  Google Scholar 

  22. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902. doi:10.1038/nrc1232.

    Article  PubMed  CAS  Google Scholar 

  23. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. doi:10.1073/pnas.0530291100.

    Article  PubMed  CAS  Google Scholar 

  24. Passegue E, Wagers AJ. Regulating quiescence: new insights into hematopoietic stem cell biology. Dev Cell. 2006;10(4):415–7. doi:10.1016/j.devcel.2006.03.002.

    Article  PubMed  CAS  Google Scholar 

  25. Walkley CR, Fero ML, Chien WM, Purton LE, McArthur GA. Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2005;7(2):172–8. doi:10.1038/ncb1214.

    Article  PubMed  CAS  Google Scholar 

  26. Li N, Singh S, Cherukuri P, et al. Reciprocal intraepithelial interactions between TP63 and hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells. 2008;26(5):1253–64. doi:10.1634/stemcells.2007-0691.

    Article  PubMed  CAS  Google Scholar 

  27. Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70. doi:10.1101/gad.1061803.

    Article  PubMed  CAS  Google Scholar 

  28. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10(2):R25. doi:10.1186/bcr1982.

    Article  PubMed  CAS  Google Scholar 

  29. Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67. doi:10.1016/j.stem.2007.08.014.

    Article  PubMed  CAS  Google Scholar 

  30. Zetterberg A, Larsson O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1985;82(16):5365–9. doi:10.1073/pnas.82.16.5365.

    Article  PubMed  CAS  Google Scholar 

  31. Coller HA. What’s taking so long? S-phase entry from quiescence versus proliferation. Nat Rev Mol Cell Biol. 2007;8(8):667–70.

    Article  PubMed  CAS  Google Scholar 

  32. Kingsbury SR, Loddo M, Fanshawe T, et al. Repression of DNA replication licensing in quiescence is independent of geminin and may define the cell cycle state of progenitor cells. Exp Cell Res. 2005;309(1):56–67. doi:10.1016/j.yexcr.2005.05.027.

    Article  PubMed  CAS  Google Scholar 

  33. Dyson N, Buchkovich K, Whyte P, Harlow E. Cellular proteins that are targetted by DNA tumor viruses for transformation. Princess Takamatsu Symp. 1989;20:191–8.

    PubMed  CAS  Google Scholar 

  34. Sage J, Miller AL, Perez-Mancera PA, Wysocki JM, Jacks T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature. 2003;424(6945):223–8. doi:10.1038/nature01764.

    Article  PubMed  CAS  Google Scholar 

  35. Viatour P, Somervaille TC, Venkatasubrahmanyam S, et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell. 2008;3(4):416–28. doi:10.1016/j.stem.2008.07.009.

    Article  PubMed  CAS  Google Scholar 

  36. Litovchick L, Sadasivam S, Florens L, et al. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell. 2007;26(4):539–51. doi:10.1016/j.molcel.2007.04.015.

    Article  PubMed  CAS  Google Scholar 

  37. Nielsen NH, Emdin SO, Cajander J, Landberg G. Deregulation of cyclin E and D1 in breast cancer is associated with inactivation of the retinoblastoma protein. Oncogene. 1997;14(3):295–304. doi:10.1038/sj.onc.1200833.

    Article  PubMed  CAS  Google Scholar 

  38. Pietilainen T, Lipponen P, Aaltomaa S, Eskelinen M, Kosma VM, Syrjanen K. Expression of retinoblastoma gene protein (Rb) in breast cancer as related to established prognostic factors and survival. Eur J Cancer. 1995;31A(3):329–33. doi:10.1016/0959-8049(94)00463-F.

    Article  PubMed  CAS  Google Scholar 

  39. Bosco EE, Knudsen ES. RB in breast cancer: at the crossroads of tumorigenesis and treatment. Cell Cycle. 2007;6(6):667–71.

    PubMed  CAS  Google Scholar 

  40. Bosco EE, Wang Y, Xu H, et al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J Clin Invest. 2007;117(1):218–28. doi:10.1172/JCI28803.

    Article  PubMed  CAS  Google Scholar 

  41. Ceccarelli C, Santini D, Chieco P, et al. Retinoblastoma (RB1) gene product expression in breast carcinoma. Correlation with Ki-67 growth fraction and biopathological profile. J Clin Pathol. 1998;51(11):818–24. doi:10.1136/jcp.51.11.818.

    Article  PubMed  CAS  Google Scholar 

  42. Zang S, Ji C, Qu X, et al. A study on Notch signaling in human breast cancer. Neoplasma. 2007;54(4):304–10.

    PubMed  CAS  Google Scholar 

  43. Buono KD, Robinson GW, Martin C, et al. The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol. 2006;293(2):565–80. doi:10.1016/j.ydbio.2006.02.043.

    Article  PubMed  CAS  Google Scholar 

  44. Bouras T, Pal B, Vaillant F, et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008;3(4):429–41. doi:10.1016/j.stem.2008.08.001.

    Article  PubMed  CAS  Google Scholar 

  45. Liu H, Adler AS, Segal E, Chang HY. A transcriptional program mediating entry into cellular quiescence. PLoS Genet. 2007;3(6):e91. doi:10.1371/journal.pgen.0030091.

    Article  PubMed  CAS  Google Scholar 

  46. Lee TC, Ziff EB. Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF. J Biol Chem. 1999;274(2):595–606. doi:10.1074/jbc.274.2.595.

    Article  PubMed  CAS  Google Scholar 

  47. Taj MM, Tawil RJ, Engstrom LD, et al. Mxi1, a Myc antagonist, suppresses proliferation of DU145 human prostate cells. Prostate. 2001;47(3):194–204. doi:10.1002/pros.1063.

    Article  PubMed  CAS  Google Scholar 

  48. Wechsler DS, Shelly CA, Petroff CA, Dang CV. MXI1, a putative tumor suppressor gene, suppresses growth of human glioblastoma cells. Cancer Res. 1997;57(21):4905–12.

    PubMed  CAS  Google Scholar 

  49. Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71. doi:10.1158/0008-5472.CAN-06-0054.

    Article  PubMed  CAS  Google Scholar 

  50. Moraes RC, Zhang X, Harrington N, et al. Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development. 2007;134(6):1231–42. doi:10.1242/dev.02797.

    Article  PubMed  CAS  Google Scholar 

  51. Fuchs E. Beauty is skin deep: the fascinating biology of the epidermis and its appendages. Harvey Lect. 1998;94:47–77.

    PubMed  Google Scholar 

  52. Raouf A, Zhao Y, To K, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008;3(1):109–18. doi:10.1016/j.stem.2008.05.018.

    Article  PubMed  CAS  Google Scholar 

  53. Glazer RI, Wang X, Yuan H, Yin Y. Mammary stem and progenitor cell regulation. Cancer Biomark. 2007;3(4–5):171–81.

    PubMed  CAS  Google Scholar 

  54. Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 2006;168(3):973–90. doi:10.2353/ajpath.2006.050416.

    Article  PubMed  CAS  Google Scholar 

  55. Phillips TM, McBride WH, Pajonk F. The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98(24):1777–85.

    Article  PubMed  Google Scholar 

  56. Meissner K, Heydrich B, Jedlitschky G, et al. The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem. 2006;54(2):215–21. doi:10.1369/jhc.5A6750.2005.

    Article  PubMed  CAS  Google Scholar 

  57. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res. 2005;65(14):6207–19. doi:10.1158/0008-5472.CAN-05-0592.

    Article  PubMed  CAS  Google Scholar 

  58. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45. doi:10.1200/JCO.2007.15.1829.

    Article  PubMed  CAS  Google Scholar 

  59. Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9. doi:10.1093/jnci/djn123.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James DiRenzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmes, D.C., DiRenzo, J. Cellular Quiescence in Mammary Stem Cells and Breast Tumor Stem Cells: Got Testable Hypotheses?. J Mammary Gland Biol Neoplasia 14, 19–27 (2009). https://doi.org/10.1007/s10911-009-9111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-009-9111-2

Keywords

Navigation