Skip to main content

Advertisement

Log in

The Role of NRG3 in Mammary Development

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The Neuregulin gene family encodes EGF-containing ligands which mediate their effects by binding to the ERBB receptor tyrosine kinases, a signalling network with important roles in both mammary gland development and breast cancer. Neuregulin3 (NRG3), a ligand for ERBB4, promotes early mammary morphogenesis and acts during specification of the mammary placode, an aggregate of epithelial cells that forms during mid-embryogenesis. Recent studies have shown that NRG3 can alter the cell fate of other epidermal progenitor populations when NRG3 is mis-expressed throughout the basal layer of the developing epidermis with the K14 promoter. Here evidence for a key function for NRG3 in promoting early mammary morphogenesis and the implication for the role of NRG3 in breast cancer and establishment of the mammary lineage are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

ERBB4:

v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian)

HER4:

human epidermal growth factor receptor 4 (also know as ERBB4 which is the nomenclature used in this review)

hFBNRG3:

human fetal brain Neuregulin3

MAPK:

mitogen-activated protein kinase

MEC:

mammary epithelial cell

NRG3:

Neuregulin3

PI3-K:

phosphatidylinositol 3-kinase

rNRG3:

recombinant NRG3

References

  1. Howard B, Panchal H, McCarthy A, Ashworth A. Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev. 2005;19(17):2078–90.

    Article  PubMed  CAS  Google Scholar 

  2. Tidcombe H, Jackson-Fisher A, Mathers K, Stern DF, Gassmann M, Golding JP. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci USA. 2003;100(14):8281–6.

    Article  PubMed  CAS  Google Scholar 

  3. Long W, Wagner KU, Lloyd KC, Binart N, Shillingford JM, Hennighausen L, et al. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development. 2003;130(21):5257–68.

    Article  PubMed  CAS  Google Scholar 

  4. Propper AY. Wandering epithelial cells in the rabbit embryo milk line. A preliminary scanning electron microscope study. Dev Biol. 1978;67(1):225–31.

    Article  PubMed  CAS  Google Scholar 

  5. Balinsky BI. On the prenatal growth of the mammary gland rudiment in the mouse. J Anat. 1950;84(3):227–35.

    PubMed  CAS  Google Scholar 

  6. Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005;437(7056):275–80.

    Article  PubMed  CAS  Google Scholar 

  7. Smart IH. Variation in the plane of cell cleavage during the process of stratification in the mouse epidermis. Br J Dermatol. 1970;82(3):276–82.

    Article  PubMed  CAS  Google Scholar 

  8. Sakakura T. Mammary embryogenesis. In: Daniel MCNACW, editor. The mammary gland. Development, regulation, and function. New York: Plenum Press; 1987.

    Google Scholar 

  9. Cunha GR, Hom YK. Role of mesenchymal–epithelial interactions in mammary gland development. J Mammary Gland Biol Neoplasia. 1996;1(1):21–35.

    Article  PubMed  CAS  Google Scholar 

  10. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339–73.

    Article  PubMed  CAS  Google Scholar 

  11. Mikkola ML, Millar SE. The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia. 2006;11(3–4):187–203.

    Article  PubMed  Google Scholar 

  12. Olivera-Martinez I, Thelu J, Dhouailly D. Molecular mechanisms controlling dorsal dermis generation from the somitic dermomyotome. Int J Dev Biol. 2004;48(2–3):93–101.

    Article  PubMed  CAS  Google Scholar 

  13. Watt FM, Lo Celso C, Silva-Vargas V. Epidermal stem cells: an update. Curr Opin Genet Dev. 2006;16(5):518–24.

    Article  PubMed  CAS  Google Scholar 

  14. Kratochwil K. Development and loss of androgen responsiveness in the embryonic rudiment of the mouse mammary gland. Dev Biol. 1977;61(2):358–65.

    Article  PubMed  CAS  Google Scholar 

  15. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.

    Article  PubMed  CAS  Google Scholar 

  16. Deome KB, Faulkin LJ Jr, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19(5):515–20.

    PubMed  CAS  Google Scholar 

  17. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125(10):1921–30.

    PubMed  CAS  Google Scholar 

  18. Boulanger CA, Mack DL, Booth BW, Smith GH. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci USA 2007;104(10):3871–6.

    Article  PubMed  CAS  Google Scholar 

  19. Panchal H, Wansbury O, Parry S, Ashworth A, Howard B. Neuregulin3 alters cell fate in the epidermis and mammary gland. BMC Dev Biol. 2007;7(1):105.

    Article  PubMed  CAS  Google Scholar 

  20. Boras-Granic K, Chang H, Grosschedl R, Hamel PA. Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland. Dev Biol. 2006.

  21. Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002;129(1):53–60.

    PubMed  CAS  Google Scholar 

  22. Veltmaat JM, Relaix F, Le LT, Kratochwil K, Sala FG, van Veelen W, et al. Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development. 2006;133(12):2325–35.

    Article  PubMed  CAS  Google Scholar 

  23. Hatsell SJ, Cowin P. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development. 2006;133(18):3661–70.

    Article  PubMed  CAS  Google Scholar 

  24. Cunha GR, Young P, Christov K, Guzman R, Nandi S, Talamantes F, et al. Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme. Acta Anat (Basel). 1995;152(3):195–204.

    CAS  Google Scholar 

  25. Propper A, Gomot L. [Tissue interactions during organogenesis of the mammary gland in the rabbit embryo]. C R Acad Sci Hebd Seances Acad Sci D. 1967;264(22):2573–5.

    PubMed  CAS  Google Scholar 

  26. Robinson GW. Cooperation of signalling pathways in embryonic mammary gland development. Nat Rev Genet. 2007;8(12):963–72.

    Article  PubMed  CAS  Google Scholar 

  27. Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet. 2001;28(2):165–8.

    Article  PubMed  CAS  Google Scholar 

  28. Frye M, Gardner C, Li ER, Arnold I, Watt FM. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development. 2003;130(12):2793–808.

    Article  PubMed  CAS  Google Scholar 

  29. Arnold I, Watt FM. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol. 2001;11(8):558–68.

    Article  PubMed  CAS  Google Scholar 

  30. Smalley M, Ashworth A. Stem cells and breast cancer: a field in transit. Nat Rev Cancer. 2003;3(11):832–44.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, et al. Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA. 1997;94(18):9562–7.

    Article  PubMed  CAS  Google Scholar 

  32. Muraoka-Cook RS, Sandahl M, Husted C, Hunter D, Miraglia L, Feng SM, et al. The intracellular domain of ErbB4 induces differentiation of mammary epithelial cells. Mol Biol Cell. 2006;17(9):4118–29.

    Article  PubMed  CAS  Google Scholar 

  33. Williams CC, Allison JG, Vidal GA, Burow ME, Beckman BS, Marrero L, et al. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J Cell Biol. 2004;167(3):469–78.

    Article  PubMed  CAS  Google Scholar 

  34. Srinivasan R, Poulsom R, Hurst HC, Gullick WJ. Expression of the c-erbB-4/HER4 protein and mRNA in normal human fetal and adult tissues and in a survey of nine solid tumour types. J Pathol. 1998;185(3):236–45.

    Article  PubMed  CAS  Google Scholar 

  35. Gullick WJ. c-erbB-4/HER4: friend or foe. J Pathol. 2003;200(3):279–81.

    Article  PubMed  CAS  Google Scholar 

  36. Aubele M, Auer G, Walch AK, Munro A, Atkinson MJ, Braselmann H, et al. PTK (protein tyrosine kinase)-6 and HER2 and 4, but not HER1 and 3 predict long-term survival in breast carcinomas. Br J Cancer. 2007;96(5):801–7.

    Article  PubMed  CAS  Google Scholar 

  37. Maatta JA, Sundvall M, Junttila TT, Peri L, Laine VJ, Isola J, et al. Proteolytic cleavage and phosphorylation of a tumor-associated ErbB4 isoform promote ligand-independent survival and cancer cell growth. Mol Biol Cell. 2006;17(1):67–79.

    Article  PubMed  CAS  Google Scholar 

  38. Junttila TT, Sundvall M, Lundin M, Lundin J, Tanner M, Harkonen P, et al. Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast cancer cells. Cancer Res. 2005;65(4):1384–93.

    Article  PubMed  CAS  Google Scholar 

  39. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16.

    Article  PubMed  CAS  Google Scholar 

  40. Gizatullin RZ, Muravenko OV, Al-Amin AN, Wang F, Protopopov AI, Kashuba VI, et al. Human NRG3 gene Map position 10q22–q23. Chromosome Res. 2000;8(6):560.

    Article  PubMed  CAS  Google Scholar 

  41. Assimacopoulos S, Grove EA, Ragsdale CW. Identification of a Pax6-dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex. J Neurosci. 2003;23(16):6399–403.

    PubMed  CAS  Google Scholar 

  42. Anton ES, Ghashghaei HT, Weber JL, McCann C, Fischer TM, Cheung ID, et al. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci. 2004;7(12):1319–28.

    Article  PubMed  CAS  Google Scholar 

  43. Golding JP, Trainor P, Krumlauf R, Gassmann M. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nat Cell Biol. 2000;2(2):103–9.

    Article  PubMed  CAS  Google Scholar 

  44. Balciuniene J, Feng N, Iyadurai K, Hirsch B, Charnas L, Bill BR, et al. Recurrent 10q22–q23 deletions: a genomic disorder on 10q associated with cognitive and behavioral abnormalities. Am J Hum Genet. 2007;80(5):938–47.

    Article  PubMed  CAS  Google Scholar 

  45. Benzel I, Bansal A, Browning BL, Galwey NW, Maycox PR, McGinnis R, et al. Interactions among genes in the ErbB-Neuregulin signalling network are associated with increased susceptibility to schizophrenia. Behav Brain Funct. 2007;3:31.

    Article  PubMed  CAS  Google Scholar 

  46. Law AJ, Kleinman JE, Weinberger DR, Weickert CS. Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet. 2007;16(2):129–41.

    Article  PubMed  CAS  Google Scholar 

  47. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002;71(4):877–92.

    Article  PubMed  Google Scholar 

  48. Eriksson PS. Schizophrenia—a stem cell disorder. Exp Neurol. 2006;199(1):26–7.

    Article  PubMed  Google Scholar 

  49. Carteron C, Ferrer-Montiel A, Cabedo H. Characterization of a neural-specific splicing form of the human neuregulin 3 gene involved in oligodendrocyte survival. J Cell Sci. 2006;119(Pt 5):898–909.

    Article  PubMed  CAS  Google Scholar 

  50. Li L, Cleary S, Mandarano MA, Long W, Birchmeier C, Jones FE. The breast proto-oncogene, HRGalpha regulates epithelial proliferation and lobuloalveolar development in the mouse mammary gland. Oncogene. 2002;21(32):4900–7.

    Article  PubMed  CAS  Google Scholar 

  51. Rio C, Buxbaum JD, Peschon JJ, Corfas G. Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem. 2000;275(14):10379–87.

    Article  PubMed  CAS  Google Scholar 

  52. Elenius K, Choi CJ, Paul S, Santiestevan E, Nishi E, Klagsbrun M. Characterization of a naturally occurring ErbB4 isoform that does not bind or activate phosphatidyl inositol 3-kinase. Oncogene. 1999;18(16):2607–15.

    Article  PubMed  CAS  Google Scholar 

  53. Zeng F, Zhang MZ, Singh AB, Zent R, Harris RC. ErbB4 isoforms selectively regulate growth factor induced Madin–Darby canine kidney cell tubulogenesis. Mol Biol Cell. 2007;18(11):4446–56.

    Article  PubMed  CAS  Google Scholar 

  54. Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett. 1999;447(2–3):227–31.

    Article  PubMed  CAS  Google Scholar 

  55. Mautino B, Dalla Costa L, Gambarotta G, Perroteau I, Fasolo A, Dati C. Bioactive recombinant neuregulin-1, -2, and -3 expressed in Escherichia coli. Protein Expr Purif. 2004;35(1):25–31.

    Article  PubMed  CAS  Google Scholar 

  56. Sweeney C, Lai C, Riese DJ 2nd, Diamonti AJ, Cantley LC, Carraway KL 3rd. Ligand discrimination in signaling through an ErbB4 receptor homodimer. J Biol Chem. 2000;275(26):19803–7.

    Article  PubMed  CAS  Google Scholar 

  57. Hobbs SS, Coffing SL, Le AT, Cameron EM, Williams EE, Andrew M, et al. Neuregulin isoforms exhibit distinct patterns of ErbB family receptor activation. Oncogene. 2002;21(55):8442–52.

    Article  PubMed  CAS  Google Scholar 

  58. Hijazi MM, Young PE, Dougherty MK, Bressette DS, Cao TT, Pierce JH, et al. NRG-3 in human breast cancers: activation of multiple erbB family proteins. Int J Oncol. 1998;13(5):1061–7.

    PubMed  CAS  Google Scholar 

  59. Nanba D, Nakanishi Y, Hieda Y. Changes in adhesive properties of epithelial cells during early morphogenesis of the mammary gland. Dev Growth Differ. 2001;43(5):535–44.

    Article  PubMed  CAS  Google Scholar 

  60. Katz E, Streuli CH. The extracellular matrix as an adhesion checkpoint for mammary epithelial function. Int J Biochem Cell Biol. 2007;39(4):715–26.

    Article  PubMed  CAS  Google Scholar 

  61. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell. 2006;126(3):489–502.

    Article  PubMed  CAS  Google Scholar 

  62. Bon G, Folgiero V, Di Carlo S, Sacchi A, Falcioni R. Involvement of alpha6beta4 integrin in the mechanisms that regulate breast cancer progression. Breast Cancer Res. 2007;9(1):203.

    Article  PubMed  CAS  Google Scholar 

  63. Lahlou H, Sanguin-Gendreau V, Zuo D, Cardiff RD, McLean GW, Frame MC, et al. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci U S A. 2007.

  64. Kanakry CG, Li Z, Nakai Y, Sei Y, Weinberger DR. Neuregulin-1 Regulates Cell Adhesion via an ErbB2/Phosphoinositide-3 Kinase/Akt-Dependent Pathway: potential Implications for Schizophrenia and Cancer. PLoS ONE. 2007;2(12):e1369.

    Article  PubMed  CAS  Google Scholar 

  65. Nie S, Chang C. PI3K and Erk MAPK mediate ErbB signaling in Xenopus gastrulation. Mech Dev. 2007;124(9–10):657–67.

    Article  PubMed  CAS  Google Scholar 

  66. Nie S, Chang C. Regulation of Xenopus gastrulation by ErbB signaling. Dev Biol. 2007;303(1):93–107.

    Article  PubMed  CAS  Google Scholar 

  67. Wansbury O, Panchal H, James M, Parry S, Ashworth A, Howard B. Dynamic expression of Erbb pathway members during early mammary gland morphogenesis. J Invest Dermatol. 2008;128(4):1009–21.

    Google Scholar 

  68. Britsch S. The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol. 2007;190:1–65.

    Article  PubMed  Google Scholar 

  69. Dunn M, Sinha P, Campbell R, Blackburn E, Levinson N, Rampaul R, et al. Co-expression of neuregulins 1, 2, 3 and 4 in human breast cancer. J Pathol. 2004;203(2):672–80.

    Article  PubMed  CAS  Google Scholar 

  70. Marshall C, Blackburn E, Clark M, Humphreys S, Gullick WJ. Neuregulins 1–4 are expressed in the cytoplasm or nuclei of ductal carcinoma (in situ) of the human breast. Breast Cancer Res Treat. 2006;96(2):163–8.

    Article  PubMed  CAS  Google Scholar 

  71. Bieche I, Onody P, Tozlu S, Driouch K, Vidaud M, Lidereau R. Prognostic value of ERBB family mRNA expression in breast carcinomas. Int J Cancer. 2003;106(5):758–65.

    Article  PubMed  CAS  Google Scholar 

  72. Revillion F, Lhotellier V, Hornez L, Bonneterre J, Peyrat JP. ErbB/HER ligands in human breast cancer, and relationships with their receptors, the bio-pathological features and prognosis. Ann Oncol. 2008;19(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  73. de Alava E, Ocana A, Abad M, Montero JC, Esparis-Ogando A, Rodriguez CA, et al. Neuregulin expression modulates clinical response to trastuzumab in patients with metastatic breast cancer. J Clin Oncol. 2007;25(19):2656–63.

    Article  PubMed  CAS  Google Scholar 

  74. Breuleux M. Role of heregulin in human cancer. Cell Mol Life Sci. 2007;64(18):2358–77.

    Article  PubMed  CAS  Google Scholar 

  75. Zahnow CA. ErbB receptors and their ligands in the breast. Expert Rev Mol Med. 2006;8(23):1–21.

    PubMed  Google Scholar 

  76. Howard B, Ashworth A. Signalling pathways implicated in early mammary gland morphogenesis and breast cancer. PLoS Genet. 2006;2(8):e112.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory is funded by Breakthrough Breast Cancer Research. I am grateful to Alan Ashworth for critical comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice A. Howard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, B.A. The Role of NRG3 in Mammary Development. J Mammary Gland Biol Neoplasia 13, 195–203 (2008). https://doi.org/10.1007/s10911-008-9082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9082-8

Keywords

Navigation