Skip to main content

Advertisement

Log in

The Neuregulin Family of Genes and their Multiple Splice Variants in Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The neuregulin family consists of four genes, NRG1–4 which can each encode products containing a domain related to the epidermal growth factor family of ligands. Each gene is subject to complex control of transcription and to splicing of their mRNA product to give many variant proteins. These do not contain secretory sequences but some, through their transmembrane sequence, are routed via the Golgi where they are glycosylated, to the cell surface. Here they may be released by regulated proteolysis to act as soluble proteins which can interact and activate members of the EGF receptor family of receptor tyrosine kinases. Other splice variants do not encode transmembrane sequences and these are found either in the cytoplasm or, if they encode a nuclear localisation sequence, in distinct compartments in the nucleoplasm. It has been shown that the variants containing a full EGF domain can act as receptor agonists but the function of the cytoplasmic and nuclear products is unknown as yet. All four neuregulin genes are expressed and play an important role in mammary gland development. They are also expressed at elevated levels in some cases of ductal carcinoma in situ of the breast and breast cancer. They seem to be active in this setting and their presence may affect the efficacy of treatment with endocrine agents or with signal transduction inhibitors directed at the EGF receptor family members. Much remains to be learned however of their normal function and their influence on breast cancer development, progression and response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

EGF:

epidermal growth factor

TGF-α:

transforming growth factor alpha

HER:

human epidermal growth factor receptor

References

  1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127–37.

    Article  PubMed  CAS  Google Scholar 

  2. Harrison PJ, Law A. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 2006;60:132–40.

    Article  PubMed  CAS  Google Scholar 

  3. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signalling network: receptor heterodimerisation in development and cancer. EMBO J 2000;19:3159–67.

    Article  PubMed  CAS  Google Scholar 

  4. Kochupurakkal BS, Harari D, Di-Segni A, Maik-Rachline G, Lyass L, Gur G, et al. Epigen, the last ligand of ErbB receptors, reveals intricate relationships between affinity and mitogenicity. J Biol Chem 2005;280:8503–12.

    Article  PubMed  CAS  Google Scholar 

  5. Uchida T, Wada K, Akamatsu T, Yonezawa M, Noguchi H, Mizoguchi A, et al. A novel epidermal growth factor-like molecule containing two follistatin modules stimulates tyrosine phosphorylation of ErbB-4 in MKN28 gastric cancer cells. Biochem Biophys Res Commun 1999;266:593–602.

    Article  PubMed  CAS  Google Scholar 

  6. Siegel DA, Davies P, Dobrenis K, Huang M. Tomoregulin 2 is found extensively in plaques in Alzheimer’s disease brain. J Neurochem 2006;98:34–44.

    Article  PubMed  CAS  Google Scholar 

  7. Kinugasa Y, Ihiguro H, Tokita Y, Oohira A, Ohmoto H, Higashiyama S. Neuroglycan C, a new member of the neuregulin family. Biochem Biophys Res Commun 2004;321:1045–9.

    Article  PubMed  CAS  Google Scholar 

  8. Stein RA, Staros JV. Insights into the evolution of the ErbB receptor family and their ligands from sequence analysis. BMC Evol Biol 2006;6:79.

    Article  PubMed  CAS  Google Scholar 

  9. Falls D. Neuregulins: functions, forms and signalling strategies. Exp Cell Res 2003;284:14–30.

    Article  PubMed  CAS  Google Scholar 

  10. Higashiyama S, Horikawa M, Yamada K, Ichino N, Nakano N, Nakagawa T, et al. A novel brain-derived member of the epidermal growth factor family that interacts with ErbB3 and ErbB4. J Biochem 1997;122:675–80.

    PubMed  CAS  Google Scholar 

  11. Busfield SJ, Michnick DA, Chickering TW, Revett TL, Ma J, Woolf EA, et al. Characterisation of a neuregulin-related gene, Don-1, that is highly expressed in restricted regions of the cerebellum and hippocampus. Mol Cell Biol 1997;17:4007–14.

    PubMed  CAS  Google Scholar 

  12. Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, et al. Neuregulin 3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci U S A 1997;94:9562–7.

    Article  PubMed  CAS  Google Scholar 

  13. Harari D, Tzahar E, Romano J, Shelly M, Pierce JH, Andrews GC, et al. Neuregulin 4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene 1999;18:2681–9.

    Article  PubMed  CAS  Google Scholar 

  14. Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature 1995;378:386–90.

    Article  PubMed  CAS  Google Scholar 

  15. Britto JM, Lukehurst S, Weller R, Fraser C, Qiu Y, Hertzog P, et al. Generation and characterisation of neuregulin-2-deficient mice. Mol Cell Biol 2004;24:8221–6.

    Article  PubMed  CAS  Google Scholar 

  16. Esper RM, Pankonin MS, Loeb JA. Neuregulins: versatile growth and differentiation factors in nervous system development and human disease. Brain Res Rev 2006;51:161–75.

    Article  PubMed  CAS  Google Scholar 

  17. Iivanainen E, Paatero I, Heikkinen SM, Junttila TT, Cao R, Klint P, et al. Intra- and extracellular signalling by endothelial neuregulin-1. Exp Cell Res 2007;313:2896–909.

    Article  PubMed  CAS  Google Scholar 

  18. Wansbury O, Panchai H, James M, Parry S, Ashworth A, Howard B. Dynamic expression of ErbB pathway members during early mammary gland development. J Invest Dermatol 2008;128:1009–21.

    Article  PubMed  CAS  Google Scholar 

  19. Longart M, Liu Y, Karavanova I, Buonanno A. Neuregulin 2 is developmentally regulated and targeted to dendrites of central neurons. J Comp Neurol 2004;472:156–72.

    Article  PubMed  CAS  Google Scholar 

  20. Carraway KL, Weber JL, Unger MJ, Ledesma J, Yu N, Gassmann M, et al. Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature 1997;387:512–6.

    Article  PubMed  CAS  Google Scholar 

  21. Chang H, Riese DJ, Glbert W, Stern DL, McMahan UJ. Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature 1997;387:509–12.

    Article  PubMed  CAS  Google Scholar 

  22. Yamada K, Ichino N, Nishii K, Sawada H, Higashiyama S, Ishiguro H, et al. Characterisation of the human NTAK gene structure and distribution of the isoforms for rat NTAK mRNA. Gene 2000;255:15–24.

    Article  PubMed  CAS  Google Scholar 

  23. Rimer M, Prieto AL, Weber AL, Colasante C, ponomareva O, Fromm L, et al. Neuregulin-2 is synthesised by motor neurons and terminal Schwann cells and activates acetylcholine receptor transcription in muscle cells expressing ErB4. Mol Cell Neurosci 2004;26:271–81.

    Article  PubMed  CAS  Google Scholar 

  24. Carteron C, Ferrer-Montiel A, Cabedo H. Characterisation of a neural-specific splicing form of the human neuregulin 3 gene involved in oligodendrocyte survival. J Cell Sci 2005;119:898–909.

    Article  CAS  Google Scholar 

  25. Dunn M, Sinha P, Campbell R, Levinson N, Rampaul R, Bates T, et al. Co-expression of neuregulin 1, 2, 3 and 4 in human breast cancer. J Pathol 2004;203:672–80.

    Article  PubMed  CAS  Google Scholar 

  26. Hayes NVL, Blackburn E, Smart LV, Boyle M, Russell G, Frost T, et al. (2007) Identification and characterisation of novel spliced variants of NRG4 in prostate cancer. Clin Cancer Res 2007;13:3147–55.

    Article  PubMed  CAS  Google Scholar 

  27. Steinthorsdottir V, Stefansson H, Birgisdottir B, Bjornsdottir S, Fasquel AC, et al. Multiple novel transcription sites for NRG1. Gene 2004;342:97–105.

    Article  PubMed  CAS  Google Scholar 

  28. Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett 1999;447:227–31.

    Article  PubMed  CAS  Google Scholar 

  29. Montero JC, Yuste L, Diaz-Rodriguez E, Esparis-Ogando A, Pandiella A. Mitogen-activated protein kinase-dependent and –independent routes control shedding of transmembrane growth factors through multiple secretases. Biochem J 2002;363:211–21.

    Article  PubMed  CAS  Google Scholar 

  30. McGowan PM, McKiernan E, Bolster F, Ryan BM, Hill AD, McDermott EW, et al. ADAM-17 predicts adverse outcome in patients with breast cancer. Ann Oncol. 2008;in press.

  31. Zhou B-BS, Peyton MB, He B, Liu C, Girard L, Caudler E, et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 2006;10:39–50.

    Article  PubMed  CAS  Google Scholar 

  32. Kenny PA, Bissell MJ. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest 2007;117:337–45.

    Article  PubMed  CAS  Google Scholar 

  33. Schaefer G, Fitzpatrick VD, Sliwkowski MX. G-Heregulin: a novel heregulin isoform that is an autocrine growth factor for the human breast cancer cell line, MDA-MB-175. Oncogene 1997;15:1385–94.

    Article  PubMed  CAS  Google Scholar 

  34. Ring HZ, Chang H, Guilbot A, Brice A, LeGuern E, Francke U. The human neuregulin-2 (NRG2) gene: cloning, mapping and evaluation as a candidate for the autosomal recessive form of Charcot–Marie–Tooth disease linked to 5q. Hum Genet 1999;104:326–32.

    Article  PubMed  CAS  Google Scholar 

  35. Nakano N, Higashiyama S, Kajihara K, Endo T, Ishiguro H, Yamada K, et al. NTAKa and b isoforms stimulate breast tumour cell growth by means of different receptor combinations. J Biochem 2000;127:925–30.

    PubMed  CAS  Google Scholar 

  36. Hobbs SS, Coffing SL, Le ATD, Cameron EM, Williams EE, Andrew M, et al. Neuregulin isoforms exhibit distinct patterns of ErbB family receptor activation. Oncogene 2002;21:8442–52.

    Article  PubMed  CAS  Google Scholar 

  37. Hijazi MM, Young PE, Dougherty MK, Bressette DS, Cao TT, Pierce JH, et al. NRG-3 in human breast cancers: activation of multiple erbB family proteins. Int J Oncol 1998;13:1061–7.

    PubMed  CAS  Google Scholar 

  38. Howard B, Panchal H, McCarthy A, Ashworth A. Identification of the scaramanga gene implicates neuregulin 3 in mammary gland specification. Genes Dev 2005;19:2078–90.

    Article  PubMed  CAS  Google Scholar 

  39. Hayes NV, Newsam RJ, Baines AJ, Gullick WJ. Characterization of the cell membrane-associated products of the neuregulin 4 gene. Oncogene 2008;27:715–20.

    Article  PubMed  CAS  Google Scholar 

  40. Burgess TL, Ross SL, Qian YX, Brankow D, Hu S. Biosynthetic processing of neu differentiation factor. Glycosylation, trafficking, and regulated cleavage from the cell surface. J Biol Chem 1995;270:19188–96.

    Article  PubMed  CAS  Google Scholar 

  41. Campion SR, Niyogi SK. Interaction of epidermal growth factor with its receptor. Prog Nucleic Acid Res Mol Biol 1994;49:353–83.

    Article  PubMed  CAS  Google Scholar 

  42. Thompson SA, Harris A, Hoang D, Ferrer M, Johnson GR. COOH-terminal extended recombinant Amphiregulin with bioactivity comparable with naturally derived growth factor. J Biol Chem 1996;271:17927–31.

    Article  PubMed  CAS  Google Scholar 

  43. Eto K, Eda K, Kanemoto S, Abe SI. The immunoglobulin domain is involved in interaction of neuregulin with ErbB. Biochem Biophys Res Commun 2006;350:263–71.

    Article  PubMed  CAS  Google Scholar 

  44. Wolpowitz D, Mason TBA, Dietrich P, Mendelsohn M, Talmage DA, Role LW. Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 2000;25:79–91.

    Article  PubMed  CAS  Google Scholar 

  45. Liu X, Hwang H, Cao L, Buckland M, Cunningham A, Chen J, et al. Domain-specific gene disruption reveals critical regulation of neuregulin signalling by its cytoplasmic tail. Proc Natl Acad Sci U S A 1998;95:13024–9.

    Article  PubMed  CAS  Google Scholar 

  46. Bao J, Wolpowitz D, Role LW, Talmage DA. Back signalling by the Nrg-1 intracellular domain. J Cell Biol 2003;161:1133–41.

    Article  PubMed  CAS  Google Scholar 

  47. Golding M, Ruhrberg C, Sandle J, Gullick WJ. Mapping nucleolar and spliceosome localisation sequences of neuregulin 1-beta3. Exp Cell Res 2004;299:110–8.

    Article  PubMed  CAS  Google Scholar 

  48. Yokozeki T, Wakatsuki S, Hatsuzawa K, Black RA, Wada I, Sehara-Fujisawa A. Meltrin b (ADAM19) mediates ectodomain shedding of neuregulin b1 in the Golgi apparatus: fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells. Genes Cells 2007;12:329–43.

    Article  PubMed  CAS  Google Scholar 

  49. Marshall C, Blackburn E, Clark M, Humphreys S, Gullick WJ. Neuregulins 1–4 are expressed in the cytoplasm or nuclei of ductal carcinoma (in situ) of the human breast. Breast Cancer Res Treat 2006;96:163–68.

    Article  PubMed  CAS  Google Scholar 

  50. Krane IM, Leder P. NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 1996;12:1781–8.

    PubMed  CAS  Google Scholar 

  51. Sartor CI, Zhou CH, Kozlowska E, Guttridge K, Kawata E, Caskey L, et al. Her4 mediates ligand-dependent antiproliferative and differentiation responses in human breast cancer cells. Mol Cell Biol 2001;21:4265–75.

    Article  PubMed  CAS  Google Scholar 

  52. Breuleux M, Schoumacher F, Rehn D, Kung W, Mueller H, Eppenberger U. Heregulins implicated in cellular functions other than receptor activation. Mol Cancer Res 2006;4:27–37.

    Article  PubMed  CAS  Google Scholar 

  53. Adelaide J, Huang HE, Murati A, Alsop AE, Orsetti B, Mozziconacci MJ, et al. A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene. Genes Chromosomes Cancer 2003;37:333–45.

    Article  PubMed  CAS  Google Scholar 

  54. Huang HE, Chin SF, Ginestier C, Bardou VJ, Adelaide J, Iyer NG, et al. A recurrent chromosomal breakpoint in breast cancer at the NRG1/neuregulin 1/heregulin gene. Cancer Res 2004;64:6840–4.

    Article  PubMed  CAS  Google Scholar 

  55. Pole JC, Courtay-Cahen C, Garcia MJ, Blood KA, Cooke SL, Alsop AE, et al. High-resolution analysis of chromosome rearrangements on 8p in breast, colon and pancreatic cancer reveals a complex pattern of loss, gain and translocation. Oncogene 2006;25:5693–706.

    Article  PubMed  CAS  Google Scholar 

  56. Raj EH, Skinner A, Mahji U, Nirmala KN, Ravichandran K, Shanta V, et al. Neuregulin1-alpha expression in locally advanced breast cancer. Breast 2001;10:41–5.

    Article  PubMed  CAS  Google Scholar 

  57. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 2007;445:437–41.

    Article  PubMed  CAS  Google Scholar 

  58. Nagata Y, Lan K-H, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumour inhibition by Trastuzumab, and loss of PTEN predicts Trastuzumab resistance in patients. Cancer Cell 2004;6:117–27.

    Article  PubMed  CAS  Google Scholar 

  59. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of Trastuzumab resistance in breast cancer. Cancer Cell 2007;12:395–402.

    Article  PubMed  CAS  Google Scholar 

  60. Kumar R. ErbB-dependent signalling as a determinant of Trastuzumab resistance. Clin Cancer Res 2007;13:4657–9.

    Article  PubMed  CAS  Google Scholar 

  61. Ritter CA, Perez-Torre M, Rinehart C, Guix M, Dugger T, Engelman JA, et al. Human breast cancer cells selected for resistance to Trastuzumab In vivo overexpress Epidermal Growth Factor Receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 2007;13:4909–19.

    Article  PubMed  CAS  Google Scholar 

  62. de Alava E, Ocana A, Abad M, Montero JC, Esparis-Ogando A, Rodriguez CA, et al. Neuregulin expression modulates clinical response to trastuzumab in patients with metastatic breast cancer. J Clin Oncol 2007;25:2656–63.

    Article  PubMed  CAS  Google Scholar 

  63. Hsieh AC, Moasser MM. Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer 2007;97:453–7.

    Article  PubMed  CAS  Google Scholar 

  64. Park BH, Davidson NE. PI3 kinase activation and response to trastuzumab therapy: what’s neu with herceptin resistance? Cancer Cell 2007;12:297–9.

    Article  PubMed  CAS  Google Scholar 

  65. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park J, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signalling. Science 2007;316:1039–43.

    Article  PubMed  CAS  Google Scholar 

  66. Schelfhout VRJ, Coene ED, Delaey B, Thys S, Page DL, De Potter C. Pathogenesis of Paget’s disease: epidermal heregulin-a, motility factor, and the HER receptor family. J Natl Cancer Inst 2000;92:622–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Richard Williamson, Department of Biosciences, University of Kent, UK for creating the three dimensional representation shown in the supplementary figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Gullick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

a The three dimensional structure of the EGF receptor (blue) in a complex with TGFα (green) (Garrett et al., Cell 110:763–773, 2002). b Same, but shown lacking the equivalent C-terminal residues absent in the γ class of neuregulin products. It can be seen that, if the structure could form, there would still be significant contacts between the ligand and both receptor domains (L1 and L2) (DOC 552 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, N.V.L., Gullick, W.J. The Neuregulin Family of Genes and their Multiple Splice Variants in Breast Cancer. J Mammary Gland Biol Neoplasia 13, 205–214 (2008). https://doi.org/10.1007/s10911-008-9078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9078-4

Keywords

Navigation