Skip to main content

Advertisement

Log in

Jak2/Stat5 Signaling in Mammogenesis, Breast Cancer Initiation and Progression

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

During normal mammary gland development, the tyrosine kinase Jak2 and its main substrate, the signal transducer and activator of transcription-5 (Stat5), are critical for the growth and differentiation of alveolar progenitors as well as the survival of secretory mammary epithelial cells. Genetic studies in mouse models support a role for the Stat5 transcription factor as a proto-oncogene in mammary tumor initiation. On the other hand, the analysis of nuclear Stat5 in human breast malignancies suggests a role of the Jak2/Stat5 pathway in the restriction of the metastatic potential of neoplastic mammary epithelial cells. Following an overview on the function of the Jak2/Stat5 pathway during normal mammary gland development, this review discusses recently published observations on human breast cancers as well as experimental evidence from genetically engineered mice that propose a dual role of Jak2/Stat5 signaling in breast cancer initiation and progression. Future studies to further test the concept of contrasting effects of Jak2/Stat5 pathway on breast cancer initiation and metastatic progression are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

Akt:

thymoma viral proto-oncogene 1

AP-1:

adaptor protein 1

Bcl-x:

B-cell leukemia gene 2-like 1 gene

Brca1:

breast and ovarian cancer gene 1, early onset

Cish:

cytokine inducible SH2-containing protein

Cre:

site-specific recombinase in bacteriophage P1 (catalyses recombination between loxP sites)

EGF:

epidermal growth factor

ER:

estrogen receptor

ErbB2–4:

epidermal growth factor receptors 2–4

Erk1/2:

mitogen activated protein kinases

Fak:

focal adhesion kinase

floxed:

flanked by loxP sites

GH:

growth hormone

GM-CSF-R:

colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte-macrophage)

gp130:

interleukin 6 signal transducer

Her2/Neu:

ErbB2; member of the epidermal growth factor receptor family

IGF-2:

insulin-like growth factor 2

IL-3R:

interleukin 3 receptor

Jak2:

Janus kinase 2

loxP:

locus of crossing (X-ing) over

MAPK:

mitogen activated protein kinase

MECs:

mammary epithelial cells

MMTV:

mouse mammary tumor virus

Myc:

myelocytomatosis oncogene

PI-MECs:

parity-induced mammary epithelial cells

PI3K:

phosphatidylinositol 3-kinase

PIAS:

protein inhibitor of activated signal transducers and activators of transcription

PRL:

prolactin

PRLR:

prolactin receptor

PKC:

protein kinase C

Ras:

Harvey rat sarcoma virus oncogene 1

SOCS:

suppressor of cytokine signaling

Src:

Rous sarcoma oncogene

Stat5:

signal transducer and activatorof transcription 5

SV40:

simian virus 40

TEL:

ets variant gene 6

TDLU:

terminal duct lobular unit

TGFα:

transforming growth factor alpha

Tyk2:

tyrosine kinase 2

WAP:

whey acidic protein

Wnt1:

wingless-related MMTV integration site 1

References

  1. Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Science. 2002;296(5573):1653–5.

    PubMed  CAS  Google Scholar 

  2. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285(1–2):1–24.

    PubMed  CAS  Google Scholar 

  3. Ihle JN. The Stat family in cytokine signaling. Curr Opin Cell Biol. 2001;13(2):211–7.

    PubMed  CAS  Google Scholar 

  4. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62.

    PubMed  CAS  Google Scholar 

  5. Rui H, Kirken RA, Farrar WL. Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem. 1994;269(7):5364–8.

    PubMed  CAS  Google Scholar 

  6. DaSilva L, Howard OM, Rui H, Kirken RA, Farrar WL. Growth signaling and JAK2 association mediated by membrane-proximal cytoplasmic regions of prolactin receptors. J Biol Chem. 1994;269(28):18267–70.

    PubMed  CAS  Google Scholar 

  7. Sakamoto K, Creamer BA, Triplett AA, Wagner KU. The Janus kinase 2 is required for expression and nuclear accumulation of Cyclin D1 in proliferating mammary epithelial cells. Mol Endocrinol. 2007;21(8):1877–92.

    PubMed  CAS  Google Scholar 

  8. Wakao H, Gouilleux F, Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response [published erratum appears in EMBO J 1995 Feb 15;14(4):854–5]. EMBO J. 1994;13(9):2182–91.

    PubMed  CAS  Google Scholar 

  9. Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci USA 1995;92(19):8831–5.

    PubMed  CAS  Google Scholar 

  10. Nevalainen MT, Xie J, Bubendorf L, Wagner KU, Rui H. Basal activation of transcription factor signal transducer and activator of transcription (Stat5) in nonpregnant mouse and human breast epithelium. Mol Endocrinol. 2002;16(5):1108–24.

    PubMed  CAS  Google Scholar 

  11. Wagner KU, Krempler A, Triplett AA, Qi Y, George NM, Zhu J, et al. Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol Cell Biol. 2004;24(12):5510–20.

    PubMed  CAS  Google Scholar 

  12. Liu X, Robinson GW, Hennighausen L. Activation of Stat5a and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation. Mol Endocrinol. 1996;10(12):1496–506.

    PubMed  CAS  Google Scholar 

  13. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol. 2004;24(18):8037–47.

    PubMed  CAS  Google Scholar 

  14. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997;11(2):179–86.

    PubMed  CAS  Google Scholar 

  15. Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93:841–50.

    PubMed  CAS  Google Scholar 

  16. LeBaron MJ, Ahonen TJ, Nevalainen MT, Rui H. In vivo response-based identification of direct hormone target cell populations using high-density tissue arrays. Endocrinology. 2007;148(3):989–1008.

    PubMed  CAS  Google Scholar 

  17. Jones FE, Welte T, Fu XY, Stern DF. ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol. 1999;147(1):77–88.

    PubMed  CAS  Google Scholar 

  18. Kazansky AV, Kabotyanski EB, Wyszomierski SL, Mancini MA, Rosen JM. Differential effects of prolactin and src/abl kinases on the nuclear translocation of STAT5B and STAT5A. J Biol Chem. 1999;274(32):22484–92.

    PubMed  CAS  Google Scholar 

  19. Neilson LM, Zhu J, Xie J, Malabarba MG, Sakamoto K, Wagner KU, Kirken RA, Rui H. Coactivation of janus tyrosine kinase (Jak)1 positively modulates prolactin-Jak2 signaling in breast cancer: recruitment of ERK and signal transducer and activator of transcription (Stat)3 and enhancement of Akt and Stat5a/b pathways. Mol Endocrinol. 2007;21(9):2218–32.

    Google Scholar 

  20. Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J. 1997;16:6926–35.

    PubMed  CAS  Google Scholar 

  21. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 1997;11(2):167–78.

    PubMed  CAS  Google Scholar 

  22. Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol. 1999;210(1):96–106.

    PubMed  CAS  Google Scholar 

  23. Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, et al. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol. 2001;155(4):531–42.

    PubMed  CAS  Google Scholar 

  24. Hennighausen L, Robinson GW, Wagner KU, Liu W. Prolactin signaling in mammary gland development. J Biol Chem. 1997;272(12):7567–9.

    PubMed  CAS  Google Scholar 

  25. Das R, Vonderhaar BK. Prolactin as a mitogen in mammary cells. J Mammary Gland Biol Neoplasia. 1997;2(1):29–39.

    PubMed  CAS  Google Scholar 

  26. Erwin RA, Kirken RA, Malabarba MG, Farrar WL, Rui H. Prolactin activates Ras via signaling proteins SHC, growth factor receptor bound 2, and son of sevenless. Endocrinology. 1995;136(8):3512–8.

    PubMed  CAS  Google Scholar 

  27. Grimley PM, Dong F, Rui H. Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. Cytokine Growth Factor Rev. 1999;10(2):131–57.

    PubMed  CAS  Google Scholar 

  28. Llovera M, Touraine P, Kelly PA, Goffin V. Involvement of prolactin in breast cancer: redefining the molecular targets. Exp Gerontol. 2000;35(1):41–51.

    PubMed  CAS  Google Scholar 

  29. Liu X, Gallego MI, Smith GH, Robinson GW, Hennighausen L. Functional rescue of Stat5a-null mammary tissue through the activation of compensating signals including Stat5b. Cell Growth Differ. 1998;9(9):795–803.

    PubMed  CAS  Google Scholar 

  30. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 1997;94(14):7239–44.

    PubMed  CAS  Google Scholar 

  31. Gallego MI, Binart N, Robinson GW, Okagaki R, Coschigano KT, Perry J, et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev Biol. 2001;229(1):163–75.

    PubMed  CAS  Google Scholar 

  32. Bunting KD, Bradley HL, Hawley TS, Moriggl R, Sorrentino BP, Ihle JN. Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5. Blood. 2002;99(2):479–87.

    PubMed  CAS  Google Scholar 

  33. Kieslinger M, Woldman I, Moriggl R, Hofmann J, Marine JC, Ihle JN, et al. Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev. 2000;14(2):232–44.

    PubMed  CAS  Google Scholar 

  34. Moriggl R, Topham DJ, Teglund S, Sexl V, McKay C, Wang D, et al. Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity. 1999;10(2):249–59.

    PubMed  CAS  Google Scholar 

  35. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93:385–95.

    PubMed  CAS  Google Scholar 

  36. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93:397–409.

    PubMed  CAS  Google Scholar 

  37. Zhao L, Hart S, Cheng J, Melenhorst JJ, Bierie B, Ernst M, et al. Mammary gland remodeling depends on gp130 signaling through Stat3 and MAPK. J Biol Chem. 2004;279(42):44093–100.

    PubMed  CAS  Google Scholar 

  38. Shillingford JM, Miyoshi K, Robinson GW, Grimm SL, Rosen JM, Neubauer H, et al. Jak2 is an essential tyrosine kinase involved in pregnancy-mediated development of mammary secretory epithelium. Mol Endocrinol. 2002;16(3):563–70.

    PubMed  CAS  Google Scholar 

  39. Krempler A, Qi Y, Triplett AA, Zhu J, Rui H, Wagner KU. Generation of a conditional knockout allele for the Janus kinase 2 (Jak2) gene in mice. Genesis. 2004;40(1):52–7.

    PubMed  CAS  Google Scholar 

  40. Iavnilovitch E, Groner B, Barash I. Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Mol Cancer Res 2002;1(1):32–47.

    PubMed  CAS  Google Scholar 

  41. Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, Young WS, et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci USA 1997;94(7):3425–30.

    PubMed  CAS  Google Scholar 

  42. Cardiff RD. Are the TDLU of the human the same as the LA of mice? J Mammary Gland Biol Neoplasia 1998;3(1):3–5.

    PubMed  CAS  Google Scholar 

  43. Wellings SR, Jensen HM, Marcum RG. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst. 1975;55(2):231–73.

    PubMed  CAS  Google Scholar 

  44. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57–70.

    PubMed  CAS  Google Scholar 

  45. Cotarla I, Ren S, Zhang Y, Gehan E, Singh B, Furth PA. Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer. 2004;108(5):665–71.

    PubMed  CAS  Google Scholar 

  46. Li T, Sotgia F, Vuolo MA, Li M, Yang WC, Pestell RG, et al. Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status. Am J Pathol 2006;168(6):1998–2013.

    PubMed  CAS  Google Scholar 

  47. Park DS, Lee H, Frank PG, Razani B, Nguyen AV, Parlow AF, et al. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell. 2002;13(10):3416–30.

    PubMed  CAS  Google Scholar 

  48. Sloan EK, Stanley KL, Anderson RL. Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 2004;23:7893–7.

    PubMed  CAS  Google Scholar 

  49. Li J, Hassan GS, Williams TM, Minetti C, Pestell RG, Tanowitz HB, et al. Loss of caveolin-1 causes the hyper-proliferation of intestinal crypt stem cells, with increased sensitivity to whole body gamma-radiation. Cell Cycle. 2005;4(12):1817–25.

    PubMed  CAS  Google Scholar 

  50. Sotgia F, Schubert W, Pestell RG, Lisanti MP. Genetic ablation of caveolin-1 in mammary epithelial cells increases milk production and hyper-activates STAT5a signaling. Cancer Biol Ther. 2006;5(3):292–7.

    Article  PubMed  CAS  Google Scholar 

  51. Sotgia F, Williams TM, Schubert W, Medina F, Minetti C, Pestell RG, et al. Caveolin-1 deficiency (−/−) conveys premalignant alterations in mammary epithelia, with abnormal lumen formation, growth factor independence, and cell invasiveness. Am J Pathol. 2006;168(1):292–309.

    PubMed  CAS  Google Scholar 

  52. Williams TM, Cheung MW, Park DS, Razani B, Cohen AW, Muller WJ, et al. Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol Biol Cell. 2003;14(3):1027–42.

    PubMed  CAS  Google Scholar 

  53. Iavnilovitch E, Cardiff RD, Groner B, Barash I. Deregulation of Stat5 expression and activation causes mammary tumors in transgenic mice. Int J Cancer. 2004;112(4):607–19.

    PubMed  CAS  Google Scholar 

  54. Yamashita H, Iwase H, Toyama T, Fujii Y. Naturally occurring dominant-negative Stat5 suppresses transcriptional activity of estrogen receptors and induces apoptosis in T47D breast cancer cells. Oncogene. 2003;22(11):1638–52.

    PubMed  CAS  Google Scholar 

  55. Mahler JF, Stokes W, Mann PC, Takaoka M, Maronpot RR. Spontaneous lesions in aging FVB/N mice. Toxicol Pathol. 1996;24(6):710–6.

    Article  PubMed  CAS  Google Scholar 

  56. Nieto AI, Shyamala G, Galvez JJ, Thordarson G, Wakefield LM, Cardiff RD. Persistent mammary hyperplasia in FVB/N mice. Comp Med. 2003;53(4):433–8.

    PubMed  CAS  Google Scholar 

  57. Wakefield LM, Thordarson G, Nieto AI, Shyamala G, Galvez JJ, Anver MR, et al. Spontaneous pituitary abnormalities and mammary hyperplasia in FVB/NCr mice: implications for mouse modeling. Comp Med. 2003;53(4):424–32.

    PubMed  CAS  Google Scholar 

  58. Eilon T, Groner B, Barash I. Tumors caused by overexpression and forced activation of Stat5 in mammary epithelial cells of transgenic mice are parity-dependent and developed in aged, postestropausal females. Int J Cancer. 2007;121(9):1892–902.

    PubMed  CAS  Google Scholar 

  59. Ginger MR, Gonzalez-Rimbau MF, Gay JP, Rosen JM. Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol Endocrinol. 2001;15(11):1993–2009.

    PubMed  CAS  Google Scholar 

  60. Wagner KU, Smith GH. Pregnancy and stem cell behavior. J Mammary Gland Biol Neoplasia. 2005;10(1):25–36.

    PubMed  Google Scholar 

  61. Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene. 2005;24(4):552–60.

    PubMed  CAS  Google Scholar 

  62. Matulka LA, Triplett AA, Wagner KU. Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol. 2007;303(1):29–44.

    PubMed  CAS  Google Scholar 

  63. Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129(6):1377–86.

    PubMed  CAS  Google Scholar 

  64. Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene. 2004;23(41):6980–5.

    PubMed  CAS  Google Scholar 

  65. Humphreys RC, Hennighausen L. Signal transducer and activator of transcription 5a influences mammary epithelial cell survival and tumorigenesis. Cell Growth Differ. 1999;10(10):685–94.

    PubMed  CAS  Google Scholar 

  66. Ren S, Cai HR, Li M, Furth PA. Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene. 2002;21(27):4335–9.

    PubMed  CAS  Google Scholar 

  67. Oakes SR, Robertson FG, Kench JG, Gardiner-Garden M, Wand MP, Green JE, et al. Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions. Oncogene. 2007;26(4):543–53.

    PubMed  CAS  Google Scholar 

  68. Nevalainen MT, Xie J, Torhorst J, Bubendorf L, Haas P, Kononen J, et al. Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J Clin Oncol. 2004;22(11):2053–60.

    PubMed  CAS  Google Scholar 

  69. Matulka LA, Wagner K-U. Models of breast cancer. Drug Discov Today 2005;2:1–6.

    CAS  Google Scholar 

  70. Utama FE, Lebaron MJ, Neilson LM, Sultan AS, Parlow AF, Wagner KU, et al. Human prolactin receptors are insensitive to mouse prolactin: implications for xenotransplant modeling of human breast cancer in mice. J Endocrinol. 2006;188(3):589–601.

    PubMed  CAS  Google Scholar 

  71. Watson CJ, Miller WR. Elevated levels of members of the STAT family of transcription factors in breast carcinoma nuclear extracts. Br J Cancer. 1995;71(4):840–4.

    PubMed  CAS  Google Scholar 

  72. Yamashita H, Nishio M, Ando Y, Zhang Z, Hamaguchi M, Mita K, et al. Stat5 expression predicts response to endocrine therapy and improves survival in estrogen receptor-positive breast cancer. Endocr Relat Cancer. 2006;13(3):885–93.

    PubMed  CAS  Google Scholar 

  73. Bratthauer GL, Strauss BL, Tavassoli FA. STAT 5a expression in various lesions of the breast. Virchows Arch. 2006;448(2):165–71.

    PubMed  CAS  Google Scholar 

  74. Strauss BL, Bratthauer GL, Tavassoli FA. STAT 5a expression in the breast is maintained in secretory carcinoma, in contrast to other histologic types. Hum Pathol. 2006;37(5):586–92.

    PubMed  CAS  Google Scholar 

  75. Sultan AS, Xie J, LeBaron MJ, Ealley EL, Nevalainen MT, Rui H. Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene. 2005;24(5):746–60.

    PubMed  CAS  Google Scholar 

  76. Gutzman JH, Rugowski DE, Nikolai SE, Schuler LA. Stat5 activation inhibits prolactin-induced AP-1 activity: distinct prolactin-initiated signals in tumorigenesis dependent on cell context. Oncogene. 2007;26(43):6341–8.

    PubMed  CAS  Google Scholar 

  77. Barash I. Stat5 in the mammary gland: controlling normal development and cancer. J Cell Physiol. 2006;209(2):305–13.

    PubMed  CAS  Google Scholar 

  78. Nouhi Z, Chughtai N, Hartley S, Cocolakis E, Lebrun JJ, Ali S. Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res. 2006;66(3):1824–32.

    PubMed  CAS  Google Scholar 

  79. Maus MV, Reilly SC, Clevenger CV. Prolactin as a chemoattractant for human breast carcinoma. Endocrinology. 1999;140(11):5447–50.

    PubMed  CAS  Google Scholar 

  80. Manni A, Wright C, Davis G, Glenn J, Joehl R, Feil P. Promotion by prolactin of the growth of human breast neoplasms cultured in vitro in the soft agar clonogenic assay. Cancer Res. 1986;46(4 Pt 1):1669–72.

    PubMed  CAS  Google Scholar 

  81. Yamashita H, Iwase H. The role of Stat5 in estrogen receptor-positive breast cancer. Breast Cancer 2002;9(4):312–8.

    PubMed  Google Scholar 

  82. Yamashita H, Nishio M, Fujii Y, Iwase H. Dominant-negative Stat5 inhibits growth and induces apoptosis in T47D-derived tumors in nude mice. Cancer Sci. 2004;95(8):662–5.

    PubMed  CAS  Google Scholar 

  83. Boerner JL, Biscardi JS, Silva CM, Parsons SJ. Transactivating agonists of the EGF receptor require Tyr 845 phosphorylation for induction of DNA synthesis. Mol Carcinog. 2005;44(4):262–73.

    PubMed  CAS  Google Scholar 

  84. Weaver AM, Silva CM. Modulation of signal transducer and activator of transcription 5b activity in breast cancer cells by mutation of tyrosines within the transactivation domain. Mol Endocrinol. 2006;20(10):2392–405.

    PubMed  CAS  Google Scholar 

  85. Weaver AM, Silva CM. Signal transducer and activator of transcription 5b (STAT5b): a new target of breast tumor kinase/protein tyrosine kinase 6 (Brk/PTK6). Breast Cancer Res. 2007;9(6):R79.

    PubMed  Google Scholar 

  86. Boerner JL, Gibson MA, Fox EM, Posner ED, Parsons SJ, Silva CM, et al. Estrogen negatively regulates EGF-mediated STAT5 signaling in HER family receptor overexpressing breast cancer cells. Mol Endocrinol. 2005;19:2660–70.

    PubMed  CAS  Google Scholar 

  87. Gass S, Harris J, Ormandy C, Brisken C. Using gene expression arrays to elucidate transcriptional profiles underlying prolactin function. J Mammary Gland Biol Neoplasia. 2003;8(3):269–85.

    PubMed  Google Scholar 

  88. Clarkson RW, Boland MP, Kritikou EA, Lee JM, Freeman TC, Tiffen PG, et al. The genes induced by signal transducer and activators of transcription (STAT)3 and STAT5 in mammary epithelial cells define the roles of these STATs in mammary development. Mol Endocrinol. 2006;20(3):675–85.

    PubMed  CAS  Google Scholar 

  89. LeBaron MJ, Xie J, Rui H. Evaluation of genome-wide chromatin library of Stat5 binding sites in human breast cancer. Mol Cancer. 2005;4(1):6.

    PubMed  Google Scholar 

  90. Fantl V, Stamp G, Andrews A, Rosewell I, Dickson C. Mice lacking Cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 1995;9(19):2364–72.

    PubMed  CAS  Google Scholar 

  91. Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell. 1995;82(4):621–30.

    PubMed  CAS  Google Scholar 

  92. Brockman JL, Schroeder MD, Schuler LA. PRL activates the Cyclin D1 promoter via the Jak2/Stat pathway. Mol Endocrinol. 2002;16(4):774–84.

    PubMed  CAS  Google Scholar 

  93. Brockman JL, Schuler LA. Prolactin signals via Stat5 and Oct-1 to the proximal Cyclin D1 promoter. Mol Cell Endocrinol. 2005;239(1–2):45–53.

    PubMed  CAS  Google Scholar 

  94. Brisken C, Ayyannan A, Nguyen C, Heineman A, Reinhardt F, Tan J, et al. IGF-2 is a mediator of prolactin-induced morphogenesis in the breast. Dev Cell. 2002;3(6):877–87.

    PubMed  CAS  Google Scholar 

  95. Ruchatz H, Coluccia AM, Stano P, Marchesi E, Gambacorti-Passerini C. Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALK-transformed cells. Exp Hematol. 2003;31(4):309–15.

    PubMed  CAS  Google Scholar 

  96. Slupianek A, Hoser G, Majsterek I, Bronisz A, Malecki M, Blasiak J, et al. Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol. 2002;22(12):4189–201.

    PubMed  CAS  Google Scholar 

  97. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.

    PubMed  CAS  Google Scholar 

  98. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

    PubMed  CAS  Google Scholar 

  99. Lee JW, Kim YG, Soung YH, Han KJ, Kim SY, Rhim HS, et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene. 2006;25(9):1434–6.

    PubMed  CAS  Google Scholar 

  100. Arnould C, Philippe C, Bourdon V, Gr goire MJ, Berger R, Jonveaux P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet. 1999;8(9):1741–9.

    PubMed  CAS  Google Scholar 

  101. Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, et al. Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med. 2003;349(12):1139–47.

    PubMed  CAS  Google Scholar 

  102. Hwa V, Little B, Adiyaman P, Kofoed EM, Pratt KL, Ocal G, et al. Severe growth hormone insensitivity resulting from total absence of signal transducer and activator of transcription 5b. J Clin Endocrinol Metab. 2005;90(7):4260–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the Public Health Service grant DK52013 (to H.R) as well as grants CA101841 (to H.R and K.U.W.), and CA117930 (to K.U.W.) from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kay-Uwe Wagner or Hallgeir Rui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, KU., Rui, H. Jak2/Stat5 Signaling in Mammogenesis, Breast Cancer Initiation and Progression. J Mammary Gland Biol Neoplasia 13, 93–103 (2008). https://doi.org/10.1007/s10911-008-9062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9062-z

Keywords

Navigation