Skip to main content

Advertisement

Log in

The Declining Phase of Lactation: Peripheral or Central, Programmed or Pathological?

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

In most species the functional activity of the mammary gland during lactation follows a biphasic developmental pattern. This pattern starts with a rapid increase in milk output that occurs with secretory activation and continues with a more gradual increase until the point of peak lactation is reached. Following this gain-of-function phase, the ability of the gland to produce milk decreases. This decrease occurs even if the lactation is prolonged by the presence of continued suckling stimulus and complete milk removal. This review describes the current state of our knowledge concerning the factors that regulate milk synthesis capacity by the mammary gland during the lactation cycle. The review describes four potential alternatives as mechanisms governing the process, which we refer to as secretory diminution. These alternatives are not presented as mutually exclusive of each other or other possible mechanisms, but are proposed as potential contributing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

GSH:

reduced glutathione

GSSG:

oxidized glutathione

8DG:

8-hydroxy, 2′-deoxyguanine

SOCS:

suppressor of cytokine signaling

IGF:

insulin-like growth factor

GH:

growth hormone

TUNEL:

terminal transferase dTUP-mediate nick end labeling

NP-Y:

neuropeptide Y

NF-kB:

nuclear factor kB

ERK:

extracellular signal regulated kinase

IR:

insuling receptor

IGF-IR:

IGF-I receptor

CIS:

cytokine induced SH2-proteins

STAT5:

signal transducer and activator of transcription 5

JAK:

janus kinase

IRS:

insulin receptor substrate

NT:

non transgenic

WD:

WAP-DES

References

  1. Hadsell DL. The insulin-like growth factor system in normal mammary gland function. Breast Dis 2003;17:3–14.

    PubMed  CAS  Google Scholar 

  2. Grossman M, Koops WJ. Modeling extended lactation curves of dairy cattle: a biological basis for the multiphasic approach. J Dairy Sci 2003;86:988–98.

    PubMed  CAS  Google Scholar 

  3. Vetharaniam I, Davis SR, Soboleva TK, Shorten PR, Wake GC. Modeling the interaction of milking frequency and nutrition on mammary gland growth and lactation. J Dairy Sci 2003;86:1987–96.

    PubMed  CAS  Google Scholar 

  4. Neville MC, Morton J, Umemura S. Lactogenesis. The transition from pregnancy to lactation. Pediatr Clin North Am 2001;48:35–52.

    Article  PubMed  CAS  Google Scholar 

  5. Grossman M, Hartz SM, Koops WJ. Persistency of lactation:a novel approach. J Dairy Sci 1999;82:2192–97.

    PubMed  CAS  Google Scholar 

  6. Hadsell DL, Torres D, George J, Capuco AV, Ellis SE, Fiorotto ML. Changes in secretory cell turnover, and mitochondrial oxidative damage in the mouse mammary gland during a single prolonged lactation cycle suggest the possibility of accelerated cellular aging. Exp Gerontol 2006;41:271–81.

    Article  PubMed  CAS  Google Scholar 

  7. Neville MC, Allen JC, Archer PC, Casey CE, Seacat J, Keller RP, et al. Studies in human lactation: milk volume and nutrient composition during weaning and lactogenesis. Am J Clin Nutr 1991;54:81–92.

    PubMed  CAS  Google Scholar 

  8. Lewallen LP, Dick MJ, Flowers J, Powell W, Zickefoose KT, Wall YG, et al. Breastfeeding support and early cessation. J Obstet Gynecol Neonatal Nurs 2006;35:166–72.

    Article  PubMed  Google Scholar 

  9. Rasmussen KM, Hilson JA, Kjolhede CL. Obesity as a risk factor for failure to initiate and sustain lactation. Adv Exp Med Biol 2002;503:217–22.

    PubMed  Google Scholar 

  10. Ploss HH, Bartels M, Bartels P. Woman 1935;3:184–216.

    Google Scholar 

  11. Parkes AS. Observations on the oestrous cycle of the albino mouse. Proc R Soc B 1926;100:151–70.

    Google Scholar 

  12. Zeilmaker GH. Prolonged lactation in mice and its effect on mammary tumorigenesis. Int J Cancer 1968;3:291–303.

    Article  PubMed  CAS  Google Scholar 

  13. Selye H, McKeown T. Further studies on the influenc of suckling. Anat Rec 1934;60:323–32.

    Article  Google Scholar 

  14. Sodersten P, Eneroth P. Suckling and serum prolactin and LH concentrations in lactating rats. J Endocrinol 1984;102:251–6.

    PubMed  CAS  Google Scholar 

  15. Knight CH, Peaker M. Mammary cell proliferation in mice during pregnancy and lactation in relation to milk yield. Q J Exp PHysiol 1982;67:165–77.

    PubMed  CAS  Google Scholar 

  16. Knight CH, Docherty AH, Peaker M. Milk yield in rats in relation to activity and size of the mammary secretory cell population. J Dairy Res 1984;51:29–35.

    Article  PubMed  CAS  Google Scholar 

  17. Hadsell DL, Torres DT, Lawrence NA, George J, Parlow AF, Lee AV, et al. Overexpression of des(1–3) insulin-like growth factor 1 in the mammary glands of transgenic mice delays the loss of milk production with prolonged lactation. Biol Reprod 2005;73:1116–25.

    Article  PubMed  CAS  Google Scholar 

  18. Knight CH, Wilde CJ. Mammary growth during lactation: implications for increasing milk yield. J Dairy Sci 1987;70:1991–2000.

    PubMed  CAS  Google Scholar 

  19. Tucker HA. Quantitative estimates of mammary growth during various physiological states: a review. J Dairy Sci 1987;70:1958–66.

    PubMed  CAS  Google Scholar 

  20. Mellenberger RW, Bauman DE, Nelson DR. Metabolic adaptations during lactogenesis. Fatty acid and lactose synthesis in cow mammary tissue. Biochem J 1973;136:741–8.

    PubMed  CAS  Google Scholar 

  21. Mellenberger RW, Bauman DE. Metabolic adaptations during lactogenesis. Lactose synthesis in rabbit mammary tissue during pregnancy and lactation. Biochem J 1974;142:659–65.

    PubMed  CAS  Google Scholar 

  22. Wilde CJ, Henderson AJ, Knight CH. Metabolic adaptations in goat mammary tissue during pregnancy and lactation. J Reprod Fertil 1986;76:289–98.

    Article  PubMed  CAS  Google Scholar 

  23. Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 2003;8:287–307.

    Article  PubMed  Google Scholar 

  24. Neville MC, Morton J. Physiology and endocrine changes underlying human lactogenesis II. J Nutr 2001;131:3005S–8S.

    PubMed  CAS  Google Scholar 

  25. Shipman LJ, Docherty AH, Knight CH, Wilde CJ. Metabolic adaptations in mouse mammary gland during a normal lactation cycle and in extended lactation. Q J Exp PHysiol 1987;72:303–11.

    PubMed  CAS  Google Scholar 

  26. Baldwin RL, Milligan LP. Enzymatic changes associated with the initiation and maintenance of lactation in the rat. J Biol Chem 1966;241:2058–66.

    PubMed  CAS  Google Scholar 

  27. Jones DH. The mitochondria of the mamary parenchymal cell in relation to the pregnancy–lactation cycle. In: Larson BL, editor. Lactation. Volume 4. New York: Academic; 1978:503–12.

    Google Scholar 

  28. Folley SJ, French TH. The intermediary metabolism of the mammary gland; respiration and acid production of mammary tissue during pregnancy, lactation and involution in the rat. Biochem J 1949;45:270–5.

    PubMed  CAS  Google Scholar 

  29. Williamson DH, Lund P, Evans RD. Substrate selection and oxygen uptake by the lactating mammary gland. Proc Nutr Soc 1995;54:165–75.

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen DA, Parlow AF, Neville MC. Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J Endocrinol 2001;170:347–56.

    Article  PubMed  CAS  Google Scholar 

  31. Hollmann KH. Cytology and fine structure of the mammary gland. In: Larson BL, Smith VR, editors. Volume 1. New York: Academic; 1978:3–95.

  32. Linzell JL, Peaker M, Taylor JC. The effects of prolactin and oxytocin on milk secretion and on the permeability of the mammary epithelium in the rabbit. J Physiol 1975;253:547–63.

    PubMed  CAS  Google Scholar 

  33. Prosser CG, Saint L, Hartmann PE. Mammary gland function during gradual weaning and early gestation in women. Aust J Exp Biol Med Sci 1984;62(Pt 2):215–28.

    PubMed  Google Scholar 

  34. Nicholas KR, Hartmann PE. Milk secretion in the rat: progressive changes in milk composition during lactation and weaning and the effect of diet. Comp Biochem Physiol A 1991;98:535–42.

    Article  PubMed  CAS  Google Scholar 

  35. Auldist MJ, Coats S, Rogers GL, McDowell GH. Changes in the Composition of Milk from Healthy and Mastitic Dairy-Cows During the Lactation Cycle. Aust J Exp Agric 1995;35:427–36.

    Article  Google Scholar 

  36. Thatcher WW, Tucker HA. Intensive nursing and lactational performance during extended lactation. Proc Soc Exp Biol Med 1968;128:46–8.

    PubMed  CAS  Google Scholar 

  37. Knight CH. Constraints on frequent or continuous lactation. Proc Nutr Soc 1989;48:45–51.

    Article  PubMed  CAS  Google Scholar 

  38. Hadsell DL, Bonnette SG, Lee AV. Genetic manipulation of the IGF-I axis to regulate mammary gland development and function. J Dairy Sci 2002;85:365–77.

    PubMed  CAS  Google Scholar 

  39. Capuco AV, Akers RM. Mammary involution in dairy animals. J Mammary Gland Biol Neoplasia 1999;4:137–44.

    Article  PubMed  CAS  Google Scholar 

  40. Stefanon B, Colitti M, Gabai G, Knight CH, Wilde CJ. Mammary apoptosis and lactation persistency in dairy animals. J Dairy Res 2002;69:37–52.

    Article  PubMed  CAS  Google Scholar 

  41. Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C. The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann N Y Acad Sci 2002;959:93–107.

    Article  PubMed  CAS  Google Scholar 

  42. Merry BJ. Dietary restriction in rodents-delayed or retarded ageing? Mech Ageing Dev 2005;126:951–9.

    Article  PubMed  CAS  Google Scholar 

  43. Mehard CW. Isolation of mitochondria from mouse mammary gland. Methods Enzymol 1974;31:305–10.

    Article  PubMed  CAS  Google Scholar 

  44. Nelsom WL, Butow RA, Ciaccio EI. Oxidative phosphorylation in guinea pig mammary gland mitochondria during various functional states. Arch Biochem Biophys 1962;96:500–5.

    Article  Google Scholar 

  45. Dreels JM, Baumrucker CR. Bovine milk-associated calcium as an uncoupling factor of mitochondrial respiration. J Dairy Sci 1982;65:1141–7.

    PubMed  CAS  Google Scholar 

  46. Esteve JM, Mompo J, Garcia DLA, Sastre J, Asensi M, Boix J, et al. Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis: studies in vivo and in vitro. FASEB J 1999;13:1055–64.

    PubMed  CAS  Google Scholar 

  47. Zaragoza R, Miralles VJ, Rus AD, Garcia C, Carmena R, Garcia-Trevijano ER, et al. Weaning induces NOS-2 expression through NF-kappaB modulation in the lactating mammary gland: importance of GSH. Biochem J 2005;391:581–8.

    Article  PubMed  CAS  Google Scholar 

  48. Cooke MS, Evans MD, Dove R, Rozalski R, Gackowski D, Siomek A, et al. DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine. Mutat Res 2005;574:58–66.

    PubMed  CAS  Google Scholar 

  49. Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 1990;87:4533–7.

    Article  PubMed  CAS  Google Scholar 

  50. Adelman R, Saul RL, Ames BN. Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 1988;85:2706–8.

    Article  PubMed  CAS  Google Scholar 

  51. Peaker M, Linzell JL. The effects of oestrus and exogenous oestrogens on milk secretion in the goat. J Endocrinol 1974;61:231–40.

    PubMed  CAS  Google Scholar 

  52. Bachman KC, Hayen MJ, Morse D, Wilcox CJ. Effect of pregnancy, milk yield, and somatic cell count on bovine milk fat hydrolysis. J Dairy Sci 1988;71:925–31.

    PubMed  CAS  Google Scholar 

  53. Tucker HA. General endocrinological control of lactation. Volume 1. New York: Academic; 1974:277–327.

    Google Scholar 

  54. Grosvenor CE, Mena F. Neural and hormonal control of milk secretion and milk ejection. In: Larson BL, Smith VR, editors. Lactation. Volume 1. New York: Academic; 1974:227–76.

    Google Scholar 

  55. Tucker HA. Hormones, mammary growth, and lactation: a 41-year perspective. J Dairy Sci 2000;83:874–84.

    PubMed  CAS  Google Scholar 

  56. Koprowski JA, Tucker HA. Bovine serum growth hormone, corticoids and insulin during lactation. Endocrinology 1973;93:645–51.

    Article  PubMed  CAS  Google Scholar 

  57. Akers RM, Goodman GT, Tucker HA. Clearance and secretion rates of prolactin in dairy cattle in various physiological states. Proc Soc Exp Biol Med 1980;164:115–9.

    PubMed  CAS  Google Scholar 

  58. Thatcher WW, Tucker HA. Adrenal function during prolonged lactation. Proc Soc Exp Biol Med 1970;134:915–8.

    PubMed  CAS  Google Scholar 

  59. McGuire MK, Pachon H, Butler WR, Rasmussen KM. Food restriction, gonadotropins, and behavior in the lactating rat. Physiol Behav 1995;58:1243–9.

    Article  PubMed  CAS  Google Scholar 

  60. Woodside B, Beaule C, Lauay C. Chronic neuropeptide Y infusion during lactation suppresses pup growth and reduces the length of lactational infertility in rats. Horm Behav 2002;41:59–69.

    Article  PubMed  CAS  Google Scholar 

  61. Barguno JM, del Pozo E, Cruz M, Figueras J. Failure of maintained hyperprolactinemia to improve lactational performance in late puerperium. J Clin Endocrinol Metab 1988;66:876–9.

    PubMed  CAS  Google Scholar 

  62. Flint DJ, Clegg RA, Knight CH. Effects of prolactin, progesterone and ovariectomy on metabolic activities and insulin receptors in the mammary gland and adipose tissue during extended lactation in the rat. J Endocrinol 1984;102:231–6.

    PubMed  CAS  Google Scholar 

  63. Thatcher WW, Tucker HA. Lactational performance of rats injected with oxytocin, cortisol-21-acetate, prolactin and growth hormone during prolonged lactation. Endocrinology 1970;86:237–40.

    PubMed  CAS  Google Scholar 

  64. Flint DJ, Clegg RA, Knight CH. Stimulation of milk secretion with inhibition of milk ejection by corticosteroids during extended lactation in the rat. J Endocrinol 1984;103:213–8.

    PubMed  CAS  Google Scholar 

  65. Zeilmaker GH. Milk yield during prolonged lactation in mice; effect of ovariectomy. J Reprod Fertil 1969;19:361–5.

    Article  PubMed  CAS  Google Scholar 

  66. Delbecchi L, Lacasse P. Short communication: suppression of estrous cycles in lactating cows has no effect on milk production. J Dairy Sci 2006;89:636–9.

    PubMed  CAS  Google Scholar 

  67. Toufexis DJ, Yorozu S, Woodside B. Y1 receptor activation is involved in the effect of exogenous neuropeptide Y on pup growth and the early termination of lactational diestrus in the postpartum rat. J Neuroendocrinol 2002;14:354–60.

    Article  PubMed  CAS  Google Scholar 

  68. Gunn AJ, Gunn TR, Rabone DL, Breier BH, Blum WF, Gluckman PD. Growth hormone increases breast milk volumes in mothers of preterm infants. Pediatrics 1996;98:279–82.

    PubMed  CAS  Google Scholar 

  69. Bauman DE, Everett RW, Weiland WH, Collier RJ. Production responses to bovine stomatotropin in northeast dairy herds. J Dairy Sci 1999;82:2564–73.

    Article  PubMed  CAS  Google Scholar 

  70. Capuco AV, Kahl S, Jack LJ, Bishop JO, Wallace H. Prolactin and growth hormone stimulation of lactation in mice requires thyroid hormones. Proc Soc Exp Biol Med 1999;221:345–51.

    Article  PubMed  CAS  Google Scholar 

  71. Flint DJ, Gardner M. Evidence that growth hormone stimulates milk synthesis by direct action on the mammary gland and that prolactin exerts effects on milk secretion by maintenance of mammary deoxyribonucleic acid content and tight junction status. Endocrinology 1994;135:1119–24.

    Article  PubMed  CAS  Google Scholar 

  72. Dehoff MH, Elgin RG, Collier RJ, Clemmons DR. Both type I and II insulin-like growth factor receptor binding increase during lactogenesis in bovine mammary tissue. Endocrinology 1988;122:2412–7.

    PubMed  CAS  Google Scholar 

  73. Davis SR, Gluckman PD, Hodgkinson SC, Farr VC, Breier BH, Burleigh BD. Comparison of the effects of administration of recombinant bovine growth hormone or N-met insulin-like growth factor-I to lactating goats. J Endocrinol 1989;123(10):33–9.

    PubMed  CAS  Google Scholar 

  74. Prosser CG, Davis SR. Milking frequency alters the milk yield and mammary blood flow response to intra-mammary infusion of insulin-like growth factor-I in the goat. J Endocrinol 1992;135:311–6.

    Article  PubMed  CAS  Google Scholar 

  75. Brem G, Hartl P, Besenfelder U, Wolf E, Zinoviera N, Pfaller R. Expression of synthetic cDNA sequences encoding human insulin-like growth factor -1 (IGF-1) in the mammary gland of transgenic rabbits. Gene 1994;149:351–5.

    Article  PubMed  CAS  Google Scholar 

  76. Wolf E, Jehle PM, Weber MM, Sauerwein H, Daxenberger A, Breier BH, et al. Human insulin-like growth factor I (IGF-I) produced in the mammary glands of transgenic rabbits: yield, receptor binding, mitogenic activity, and effects on IGF-binding proteins. Endocrinology 1997;138:307–13.

    Article  PubMed  CAS  Google Scholar 

  77. Su HY, Cheng WT. Increased milk yield in transgenic mice expressing insulin-like growth factor 1. Anim Biotechnol 2004;15:9–19.

    Article  PubMed  CAS  Google Scholar 

  78. Monaco MH, Gronlund DE, Bleck GT, Hurley WL, Wheeler MB, Donovan SM. Mammary specific transgenic over-expression of insulin-like growth factor-I (IGF-I) increases pig milk IGF-I and IGF binding proteins, with no effect on milk composition or yield. Transgenic Res 2005;14:761–73.

    Article  PubMed  CAS  Google Scholar 

  79. Lee AV, Taylor ST, Greenall J, Mills JD, Tonge DW, Zhang P, et al. Rapid induction of IGF-IR signaling in normal and tumor tissue following intravenous injection of IGF-I in mice. Horm Metab Res 2003;35:651–5.

    Article  PubMed  CAS  Google Scholar 

  80. Rico-Bautista E, Flores-Morales A, Fernandez-Perez L. Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. Cytokine Growth Factor Rev 2006.

  81. Lindeman GJ, Wittlin S, Lada H, Naylor MJ, Santamaria M, Zhang JG, et al. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev 2001;15:1631–6.

    Article  PubMed  CAS  Google Scholar 

  82. Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, et al. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol 2006;20:1177–87.

    Article  PubMed  CAS  Google Scholar 

  83. Tam SP, Lau P, Djiane J, Hilton DJ, Waters MJ. Tissue-specific induction of SOCS gene expression by PRL. Endocrinology 2001;142:5015–26.

    Article  PubMed  CAS  Google Scholar 

  84. Wall EH, Crawford HM, Ellis SE, Dahl GE, McFadden TB. Mammary response to exogenous prolactin or frequent milking during early lactation in dairy cows. J Dairy Sci 2006;89:4640–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Walter Olea for technical assistance and Ms. Louise Hadsell for critically reading the manuscript and providing editorial comments. The authors also thank Dr. Albert F. Parlow and the National Hormone and Pituitary Program for the recombinant murine prolactin used in these studies. Some of the work described in this manuscript was supported by grants to D.L. Hadsell from the United States Department of Agriculture/Agricultural Research Service (cooperative agreement #58-6250-6001), from the United States Department of Agriculture National Research Initiative, Cooperative State Research, Education, and Extension Service (#2001-35206-11145) and from the National Institutes of Health (DK52197). The contents of this publication do not necessarily reflect the views or policies of the United States Department of Agriculture nor does the mention of any trade names, commercial products or organizations imply endorsement by the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl Hadsell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadsell, D., George, J. & Torres, D. The Declining Phase of Lactation: Peripheral or Central, Programmed or Pathological?. J Mammary Gland Biol Neoplasia 12, 59–70 (2007). https://doi.org/10.1007/s10911-007-9038-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-007-9038-4

Keywords

Navigation