Skip to main content

Advertisement

Log in

Mammary Gland Macrophages: Pleiotropic Functions in Mammary Development

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary gland development is a complex process involving epithelial cells and supporting stromal cells. Macrophages (M∅s) are an important component of the mammary gland stroma and are critical for normal mammary gland development; however, the mechanisms by which macrophages regulate these processes are not well understood. M∅s are known to interact with numerous cell types, including epithelial cells, fibroblasts, adipocytes, and endothelial cells, all of which are significant components of mammary gland development. Therefore, the purpose of this review is to describe the interactions between M∅s and these various cell types and use this knowledge to identify potential functions of M∅s in the mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

M∅:

macrophage

TEB:

terminal end bud

TAM:

tumor associated macrophage

ECM:

extracellular matrix

LPS:

lipopolysaccharide

IFN:

interferon

IL:

interleukin

TGF:

transforming growth factor

CSF-1:

colony stimulating factor-1

CSF-1R:

colony stimulating factor-1 receptor

DT:

diphtheria toxin

MMTV:

mouse mammary tumor virus

EGF:

epidermal growth factor

PyMT:

polyoma middle T

FGF:

fibroblast growth factor

WAT:

white adipose tissue

TNF:

tumor necrosis factor

VEGF:

vascular endothelial growth factor

TP:

thymidine phosphorylase

PGE2 :

prostaglandin E2

PDGF:

platelet derived growth factor

MMP:

matrix metalloproteinase

IGF:

insulin-like growth factor

References

  1. Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res 2002;4(4): 155–64.

    Article  PubMed  Google Scholar 

  2. Monks J, Geske FJ, Lehman L, Fadok VA. Do inflammatory cells participate in mammary gland involution? J Mammary Gland Biol Neoplasia 2002;7(2):163–76.

    Article  PubMed  Google Scholar 

  3. Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 2002;7(2):147–62.

    Article  PubMed  Google Scholar 

  4. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420(6917):860–7.

    Article  CAS  PubMed  Google Scholar 

  5. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23(11):549–55.

    Article  CAS  PubMed  Google Scholar 

  6. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  7. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25(12):677–86.

    Article  CAS  PubMed  Google Scholar 

  8. Raes G, Van den Bergh R, De Baetselier P, Ghassabeh GH, Scotton C, Locati M, et al. Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 2005;174(11):6561 (author reply 6561–2).

    CAS  PubMed  Google Scholar 

  9. Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V, et al. SHIP represses the generation of alternatively activated macrophages. Immunity 2005;23(4):361–74.

    Article  CAS  PubMed  Google Scholar 

  10. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 2005;65(8): 3437–46.

    CAS  PubMed  Google Scholar 

  11. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003;3(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  12. Kim TW, Moon HB, Kim SJ. Interleukin-10 is up-regulated by prolactin and serum-starvation in cultured mammary epithelial cells. Mol Cells 2003;16(2):168–72.

    CAS  PubMed  Google Scholar 

  13. Serra R, Crowley MR. Mouse models of transforming growth factor {beta} impact in breast development and cancer. Endocr Relat Cancer 2005;12(4):749–60.

    Article  CAS  PubMed  Google Scholar 

  14. Hume DA, Perry VH, Gordon S. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 1983;97(1):253–7.

    Article  CAS  PubMed  Google Scholar 

  15. Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, Fleisch H, et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 1994;120(6): 1357–72.

    CAS  PubMed  Google Scholar 

  16. Ryan GR, Dai XM, Dominguez MG, Tong W, Chuan F, Chisholm O, et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood 2001;98(1):74–84.

    Article  CAS  PubMed  Google Scholar 

  17. Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev 2005;16(6):553–60.

    Article  CAS  PubMed  Google Scholar 

  18. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003;19(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  19. Zafiropoulos A, Crikas N, Passam AM, Spandidos DA. Significant involvement of CCR2-64I and CXCL12-3a in the development of sporadic breast cancer. J Med Genet 2004;41(5):e59.

    Article  CAS  PubMed  Google Scholar 

  20. Tang G, Charo DN, Wang R, Charo IF, Messina L. CCR2-/- knockout mice revascularize normally in response to severe hindlimb ischemia. J Vasc Surg 2004;40(4):786–95.

    Article  PubMed  Google Scholar 

  21. Pollard JW. Role of colony-stimulating factor-1 in reproduction and development. Mol Reprod Dev 1997;46(1):54–60 (discussion 60–1).

    Article  CAS  PubMed  Google Scholar 

  22. van Rooijen N, van Kesteren-Hendrikx E. Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res 2002;12(1)–2:81–94.

    Article  PubMed  Google Scholar 

  23. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 2002;99(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  24. Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci USA 1994;91(20):9312–6.

    Article  CAS  PubMed  Google Scholar 

  25. Burnett SH, Kershen EJ, Zhang J, Zeng L, Straley SC, Kaplan AM, et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J Leukoc Biol 2004;75(4): 612–23.

    Article  CAS  PubMed  Google Scholar 

  26. Philipovskiy AV, Cowan C, Wulff-Strobel CR, Burnett SH, Kerschen EJ, Cohen DA, et al. Antibody against V antigen prevents Yop-dependent growth of Yersinia pestis. Infect Immun 2005;73(3):1532–42.

    Article  CAS  PubMed  Google Scholar 

  27. Qualls JE, Kaplan AM, van Rooijen N, Cohen DA. Suppression of experimental colitis by intestinal mononuclear phagocytes. J Leukoc Biol 2006;80(4):802–15.

    Article  CAS  PubMed  Google Scholar 

  28. Burnett SH, Beus BJ, Avdiushko R, Qualls JE, Kaplan AM, Cohen DA. Development of peritoneal adhesions in macrophage depleted mice. J Surg Res 2006;131(2):296–301.

    Article  CAS  PubMed  Google Scholar 

  29. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005;115(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  30. Ferron M, Vacher J. Targeted expression of Cre recombinase in macrophages and osteoclasts in transgenic mice. Genesis 2005;41(3):138–45.

    Article  CAS  PubMed  Google Scholar 

  31. Van Nguyen A, Pollard JW. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev Biol 2002;247(1):11–25.

    Article  CAS  Google Scholar 

  32. Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 2005;102(1):99–104.

    Article  CAS  PubMed  Google Scholar 

  33. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004;432(7015):324–31.

    Article  CAS  PubMed  Google Scholar 

  34. Kenney NJ, Smith GH, Lawrence E, Barrett JC, Salomon DS. Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. J Biomed Biotechnol 2001;1(3): 133–143.

    Article  CAS  PubMed  Google Scholar 

  35. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004;64(19):7022–9.

    Article  CAS  PubMed  Google Scholar 

  36. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005;65(12):5278–83.

    Article  CAS  PubMed  Google Scholar 

  37. Watters JJ, Schartner JM, Badie B. Microglia function in brain tumors. J Neurosci Res 2005;81(3):447–55.

    Article  CAS  PubMed  Google Scholar 

  38. Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 2003;54(3):388–92.

    Article  CAS  PubMed  Google Scholar 

  39. Briers TW, Desmaretz C, Vanmechelen E. Generation and characterization of mouse microglial cell lines. J Neuroimmunol 1994;52(2):153–64.

    Article  CAS  PubMed  Google Scholar 

  40. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, et al. Amplification and overexpression of the EGF receptor gene in primary human glioblastomas. J Cell Sci Suppl 1985;3: 161–72.

    CAS  PubMed  Google Scholar 

  41. Prahl M, Nederman T, Carlsson J, Sjodin L. Binding of epidermal growth factor (EGF) to a cultured human glioma cell line. J Recept Res 1991;11(5):791–812.

    CAS  PubMed  Google Scholar 

  42. Schwertfeger KL, Xian W, Kaplan AM, Burnett SH, Cohen DA, Rosen JM. A critical role for the inflammatory response in a mouse model of preneoplastic progression. Cancer Res 2006;66(11):5676–85.

    Article  CAS  PubMed  Google Scholar 

  43. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112(12):1796–808.

    Article  CAS  PubMed  Google Scholar 

  44. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2005;115(5):911–9 (quiz 920).

    Article  CAS  PubMed  Google Scholar 

  45. Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 2005;33(Pt 5):1078–81.

    CAS  PubMed  Google Scholar 

  46. Maffei M, Fei H, Lee GH, Dani C, Leroy P, Zhang Y, et al. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci USA 1995;92(15):6957–60.

    Article  CAS  PubMed  Google Scholar 

  47. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995;270(45):26746–9.

    Article  CAS  PubMed  Google Scholar 

  48. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 1996;221(2): 286–9.

    Article  CAS  PubMed  Google Scholar 

  49. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005;46(11):2347–55.

    Article  CAS  PubMed  Google Scholar 

  50. Wei S, Lightwood D, Ladyman H, Cross S, Neale H, Griffiths M, et al. Modulation of CSF-1-regulated post-natal development with anti-CSF-1 antibody. Immunobiology 2005;210(2–4):109–19.

    Article  CAS  PubMed  Google Scholar 

  51. Couldrey C, Moitra J, Vinson C, Anver M, Nagashima K, Green J. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn 2002;223(4):459–68.

    Article  PubMed  Google Scholar 

  52. Hu X, Juneja SC, Maihle NJ, Cleary MP. Leptin—a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst 2002;94(22):1704–11.

    CAS  PubMed  Google Scholar 

  53. Yu JL, Rak JW. Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 2003;5(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  54. Crowther M, Brown NJ, Bishop ET, Lewis CE. Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 2001;70(4):478–90.

    CAS  PubMed  Google Scholar 

  55. Albini A, Tosetti F, Benelli R, Noonan DM. Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 2005;65(23):10637–41.

    Article  CAS  PubMed  Google Scholar 

  56. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002;196(3):254–65.

    Article  CAS  PubMed  Google Scholar 

  57. Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 2005;167(3):627–35.

    CAS  PubMed  Google Scholar 

  58. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000;2(10):737–44.

    Article  CAS  PubMed  Google Scholar 

  59. Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 2004;114(5):623–33.

    Article  CAS  PubMed  Google Scholar 

  60. De Palma M, Venneri MA, Galli R, Sergi LS, Politi LS, Sampaolesi M, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005;8(3):211–26.

    Article  PubMed  CAS  Google Scholar 

  61. Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Curr Opin Cell Biol 2005;17(5):559–64.

    Article  CAS  PubMed  Google Scholar 

  62. Hubbard NE, Lim D, Mukutmoni M, Cai A, Erickson KL. Expression and regulation of murine macrophage angiopoietin-2. Cell Immunol 2005;234(2):102–9.

    Article  CAS  PubMed  Google Scholar 

  63. Kovacs EJ, DiPietro LA. Fibrogenic cytokines and connective tissue production. Faseb J 1994;8(11):854–61.

    CAS  PubMed  Google Scholar 

  64. Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 2001;52(2):182–9.

    Article  CAS  PubMed  Google Scholar 

  65. Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 2003;162(6):1123–33.

    Article  CAS  PubMed  Google Scholar 

  66. Nathan CF. Secretory products of macrophages. J Clin Invest 1987;79(2):319–26.

    Article  CAS  PubMed  Google Scholar 

  67. DiPietro LA, Polverini PJ. Angiogenic macrophages produce the angiogenic inhibitor thrombospondin 1. Am J Pathol 1993;143(3):678–84.

    CAS  PubMed  Google Scholar 

  68. Reed MJ, Puolakkainen P, Lane TF, Dickerson D, Bornstein P, Sage EH. Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochem 1993;41(10):1467–77.

    CAS  PubMed  Google Scholar 

  69. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol 1994;55(3):410–22.

    CAS  PubMed  Google Scholar 

  70. Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 2000;204(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  71. Park JE, Barbul A. Understanding the role of immune regulation in wound healing. Am J Surg 2004;187(5A):11S–16S.

    Article  CAS  PubMed  Google Scholar 

  72. Green KA, Lund LR. ECM degrading proteases and tissue remodeling in the mammary gland. BioEssays 2005;27:894–903.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

K.L.S. was supported by a Ruth L. Kirschstein National Research Service Award (CA 097676). This work was supported by NIH grant CA16303 to J.M.R. and NIH grant R01 HL69459 and the Kentucky Lung Cancer Research Program to D.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn L. Schwertfeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwertfeger, K.L., Rosen, J.M. & Cohen, D.A. Mammary Gland Macrophages: Pleiotropic Functions in Mammary Development. J Mammary Gland Biol Neoplasia 11, 229–238 (2006). https://doi.org/10.1007/s10911-006-9028-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-006-9028-y

Keywords

Navigation