Skip to main content
Log in

A robust numerical technique for weakly coupled system of parabolic singularly perturbed reaction–diffusion equations

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This article presents a uniformly convergent numerical technique for a time-dependent reaction-dominated singularly perturbed system, including the same diffusion parameters multiplied with second-order spatial derivatives in all equations. Boundary layers are observed in the solution components for the small parameter. The proposed numerical technique consists of the Crank–Nicolson scheme in the temporal direction over a uniform mesh and quadratic \(\mathbb {B}\)-splines collocation technique over an exponentially graded mesh in the spatial direction. We derived the robust error estimates to establish the optimal order of convergence. Numerical investigations confirm the theoretical determinations and the proposed method’s efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.S. Bakhvalov, On the optimization of methods for solving boundary value problems in the presence of boundary layers. Zh. Vychisl. Mat. Mat. Fiz. 9, 841–859 (1969)

    Google Scholar 

  2. G.I. Barenblatt, I.P. Zheltov, I.N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  Google Scholar 

  3. C. Clavero, J.L. Gracia, J.C. Jorge, High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers. Numer. Methods Partial Differ. Equ. 21, 149–169 (2005)

    Article  Google Scholar 

  4. C. Clavero, J.L. Gracia, F. Lisbona, Second order uniform approximations for the solution of time dependent singularly perturbed reaction-diffusion systems. Int. J. Numer. Anal. Model. 7, 428–443 (2010)

    Google Scholar 

  5. P. Constantinou, C. Xenophontos, Finite element analysis of an exponentially graded mesh for singularly perturbed problems. Comput. Methods Appl. Math. 15, 135–143 (2015)

    Article  Google Scholar 

  6. S.C. Cowin, Bone poroelasiticity. J. Biomech. 32, 217–238 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. P. Das, S. Natesan, A uniformly convergent hybrid scheme for singularly perturbed system of reaction-diffusion Robin type boundary-value problems. J. Appl. Math. Comput. 41, 447–471 (2013)

    Article  CAS  Google Scholar 

  8. P. Das, J. Vigo-Aguiar, Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. J. Comput. Appl. Math. 354, 533–544 (2019)

    Article  Google Scholar 

  9. R. Dillon, P.K. Maini, H.G. Othmer, Pattern formation in generalized Turing systems. J. Math. Biol. 32, 345–393 (1994)

    Article  Google Scholar 

  10. E.P. Doolan, J.J.H. Miller, W.H.A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers (Boole Press, Dublin, 1980)

    Google Scholar 

  11. P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Robust Computational Techniques for Boundary Layers (Chapman & Hall/CRC, Boca Raton, 2000)

    Book  Google Scholar 

  12. A.C. Fowler, Convective diffusion of an enzyme reaction. SIAM J. Appl. Math. 33, 289–297 (1977)

    Article  Google Scholar 

  13. J.L. Gracia, F.J. Lisbona, A uniformly convergent scheme for a system of reaction-diffusion equations. J. Comput. Appl. Math. 206, 1–16 (2007)

    Article  Google Scholar 

  14. W.J. Kammerer, G.W. Reddien, R.S. Varga, Quadratic interpolatory splines. Numer. Math. 22, 241–259 (1974)

    Article  Google Scholar 

  15. N. Kopteva, Maximum norm a posteriori error estimates for a 1D singularly perturbed semilinear reaction diffusion problem. IMA J. Numer. Anal. 27, 576–592 (2007)

    Article  Google Scholar 

  16. S. Kumar, S.C.S. Rao, A robust overlapping Schwarz domain decomposition algorithm for time-dependent singularly perturbed reaction-diffusion problems. J. Comput. Appl. Math. 261, 127–138 (2014)

    Article  Google Scholar 

  17. D. Kumar, A uniformly convergent scheme for two-parameter problems having layer behaviour. Int. J. Comput. Math. 99, 553–574 (2022)

    Article  Google Scholar 

  18. T. Linß, N. Madden, Accurate solution of a system of coupled singularly perturbed reaction-diffusion equations. Computing 73, 121–133 (2004)

    Google Scholar 

  19. T. Linß, N. Madden, Layer-adapted meshes for a linear system of coupled singularly perturbed reaction-diffusion problems. IMA J. Numer. Anal. 29, 109–125 (2009)

    Article  Google Scholar 

  20. T. Linß, G. Radojev, H. Zarin, Approximation of singularly perturbed reaction-diffusion problems by quadratic \(C^1\)-splines. Numer. Algorithms 61, 35–55 (2012)

    Article  Google Scholar 

  21. N. Madden, M. Stynes, A uniformly convergent numerical method for a coupled system of singularly perturbed linear reaction-diffusion problems. IMA J. Numer. Anal. 23, 627–644 (2003)

    Article  Google Scholar 

  22. M.J. Marsden, Quadratic spline interpolation. Bull. Am. Math. Soc. 80, 903–906 (1974)

    Article  Google Scholar 

  23. H.G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems (Springer, Berlin, 2008)

    Google Scholar 

  24. D. Shakti, J. Mohapatra, P. Das, J. Vigo-Aguiar, A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. J. Comput. Appl. Math. 404, 113167 (2022)

    Article  Google Scholar 

  25. L. Shishkina, G. Shishkin, Robust numerical method for a system of singularly perturbed parabolic reaction-diffusion equations on a rectangle. Math. Model. Anal. 13, 251–261 (2008)

    Article  Google Scholar 

  26. G. Singh, S. Natesan, A uniformly convergent numerical scheme for a coupled system of singularly perturbed reaction-diffusion equations. Numer. Funct. Anal. Optim. 41, 1172–1189 (2020)

    Article  Google Scholar 

  27. S. Singh, D. Kumar, H. Ramos, A uniformly convergent quadratic \(B\)-spline based scheme for singularly perturbed degenerate parabolic problems. Math. Comput. Simul. 195, 88–106 (2022)

    Article  Google Scholar 

  28. R. Vulanović, L. Teofanov, A uniform numerical method for semilinear reaction-diffusion problems with a boundary turning point. Numer. Algorithms 54, 431–444 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the unknown reviewers for their insightful observations leading to the improvement of the manuscript. The first author is thankful to UGC, New Delhi, India, for providing the senior research fellowship (award letter No. 1078/(CSIR-UGC NET JUNE 2019)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Kumar, D. & Vigo-Aguiar, J. A robust numerical technique for weakly coupled system of parabolic singularly perturbed reaction–diffusion equations. J Math Chem 61, 1313–1350 (2023). https://doi.org/10.1007/s10910-023-01464-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-023-01464-w

Keywords

Mathematics Subject Classification

Navigation