Skip to main content

Advertisement

Log in

A new spectral collocation method for solving Bratu-type equations using Genocchi polynomials

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we have introduced a new Genocchi polynomial approximation method for solving Bratu-type equations arising in Engineering. With the help of Genocchi operational matrices of derivatives, the nonlinear differential equations are converted in to a system of algebraic equations. To the best of our knowledge until now there is no rigorous Genocchi spectral solution has been reported for the above model. The generalization of the Bratu-type models has led to the variety of Engineering applications such as radiative heat transfer, thermal reaction, chemical reactor theory and nanotechnology. Convergence and error analyses of the proposed method is also discussed. The power of the manageable method is confirmed. Finally, we have given a few examples to demonstrate the validity and applicability of the proposed spectral method. The obtained numerical results are compared with the Adomian decomposition method, Laplace transform method, genetic algorithm, perturbation-iteration algorithm, Artificial neural network and B-Spline method. Satisfactory agreement with the computational methods is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Abbasbandy, M.S. Hashemi, C.-S. Liu, The Lie-group shooting method for solving the Bratu equation. Commun. Nonlinear Sci. Numer. Simulat. 16, 4238–4249 (2011)

    Article  Google Scholar 

  2. M. Abukhaled, S. Khuri, A. Sayfy, Spline-based numerical treatments of Bratu-type equations. Palest. J. Math. 1, 63–70 (2012)

    Google Scholar 

  3. Y. Aksoy, M. Pakdemirli, New perturbation solutions for Bratu-type equations. Comput. Math. Appl. 59, 2802–2808 (2010)

    Article  Google Scholar 

  4. S. Araci, Novel identities involving Genocchi Numbers and polynomials arising from applictions from umbral calculus. Appl. Math. Comput. 233, 599–607 (2014)

    Google Scholar 

  5. Y.A.S. Aregbesola, Numerical solution of Bratu problem using the method of weighted residual. Electron J South. Afric. Math. Sci. Assoc. 3(1), 1–7 (2003)

  6. U.M. Ascher, R. Matheij, R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (SIAM, Philadelphia, 1995)

    Book  Google Scholar 

  7. B. Batiha, Numerical solution of Bratu-type equations by the variational iteration method. Hacettepe J. Math. Stat. 39, 23–29 (2010)

    Google Scholar 

  8. J.P. Boyd, An analytical and numerical study of the two-dimensional Bratu equations. J. Sci. Comput. 1(2), 183–206 (1986)

    Article  Google Scholar 

  9. J.P. Boyd, Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation. Appl. Math. Comput. 142, 189–200 (2003)

    Google Scholar 

  10. G. Bratu, Sur les equation integrals non-lineaires. Bull. Math. Soc. France 42, 113–142 (1914)

    Article  Google Scholar 

  11. R. Buckmire, Investigations of nonstandard Mickens-type finite-difference schemes for singular boundary value problems in cylindrical or spherical coordinates. Numer. Methods Partial. Diff. Eqns. 19(3), 380–398 (2003)

    Article  Google Scholar 

  12. H. Caglar, N. Caglar, M. Ozer, A. Valaristos, A.N. Anagnostopoulos, B-spline method for solving Bratu’s problem. Int. J. Comput. Math. 87(8), 1885–1891 (2010)

    Article  Google Scholar 

  13. Y. Changqing, J. Hou, Chebyshev wavelets method for solving Bratu’s problem. Yang Hou Bound. Value Probl. 142, 1–9 (2013)

    Google Scholar 

  14. E.H. Dohaa, A.H. Bhrawy, D. Baleanu, R.M. Hafez, Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu type. Comput. Math. Math. Phys. 53(9), 1292–1302 (2013)

    Article  Google Scholar 

  15. B. Esmail, S. Javadi, E. Moradi, RKM for solving Bratu-type differential equations of fractional order. Math. Methods Appl. Sci. 39(6), 1548–1557 (2016)

    Article  Google Scholar 

  16. X. Feng, Y. He, J. Meng, Application of Homotopy perturbation method to the Bratu-type equations. Topol. Methods Nonlinear Anal. 31, 243–252 (2008)

    Google Scholar 

  17. I.M. Gelfand, Some problems in the theory of quasi-linear equations. Trans. Am. Math. Soc. Ser. 2, 295–381 (1963)

    Google Scholar 

  18. B. Ghazanfari, A. Sepahvandzadeh, Adomian's decomposition method for solving fractional Bratu-type equations. J. Math. Comput. Sci. 8, 236–244 (2014)

    Article  Google Scholar 

  19. J.H. He, H.Y. Kong, R.X. Chen, Q.L. Chen, Variational iteration method for Bratu-like equation arising in electrospinning. Carbohyd. Polym. 105, 229–230 (2014)

    Article  CAS  Google Scholar 

  20. J. Jacobson, K. Shmitt, The Liouville–Bratu–Gelfand problem for radial operators. J. Diff. Eqns. 184, 283–298 (2002)

    Article  Google Scholar 

  21. H.Q. Kafri, S.A. Khuri, Bratu, s problem: a novel approach using fixed-point iterations and Green's functions. Comput. Phys. Commun. 198, 97–104 (2016)

    Article  CAS  Google Scholar 

  22. S.A. Khuri, A new approach to Bratu’s problem. Appl. Math. Comput. 147, 131–6 (2004)

    Google Scholar 

  23. T. Kim, Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 20(1), 23–28 (2010)

    Google Scholar 

  24. M. Kumar, N. Yadav, Numerical solution of Bratu’s problem using multilayer perceptron neural network method. Natl. Acad. Sci. Lett. (2015). https://doi.org/10.1007/s40009-015-0359-3

    Article  Google Scholar 

  25. S. Liao, Y. Tan, A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–354 (2007)

    Article  Google Scholar 

  26. D. Mohamed Abdalla, B.S. Kashkari, Numerical solutions of second order initial value problems of Bratu-type via optimal homotopy asymptotic method. Am. J. Comput. Math. 4, 47–54 (2014)

    Article  Google Scholar 

  27. A.S. Mounim, B.M. de Dormale, From the fitting techniques to accurate schemes for the Liouville–Bratu–Gelf and problem. Numer. Methods Partial Differ. Equ. 22(4), 761–775 (2006)

    Article  Google Scholar 

  28. Z.R. Muhammad Asif, R. Samar, E.S. Alaidarous, E. Shivanian, Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids. Appl. Math. Model. 40, 5964–5977 (2016)

    Article  Google Scholar 

  29. M.A. Noor, S.T. Mohyud-Din, Variational iteration technique for solving higher order boundary value problems. Appl. Math. Comput. 189, 1929–1942 (2007)

    Google Scholar 

  30. J. Rashidinia, K. Maleknejad, N. Taheri, Sinc-Galerkin method for numerical solution of the Bratu’s problems. Numer. Algor. 62, 1–11 (2013)

    Article  Google Scholar 

  31. K.A. Suheil, A.M. Wazwaz, A variational approach to a BVP arising in the modelling of electrically conducting solids. Cent. Eur. J. Eng. 3(1), 106–112 (2013)

    Google Scholar 

  32. M.I. Syam, A. Hamdan, An efficient method for solving Bratu equations. Appl. Math. Comput. 176, 704–713 (2006)

    Google Scholar 

  33. E. Tohidi, A.H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Modell. (2012). https://doi.org/10.1016/j.apm.2012.09.032

    Article  Google Scholar 

  34. Y.Q. Wan, Q. Guo, N. Pan, Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonli. Sci. Numer. Simul. 5(1), 5–8 (2004)

    Article  Google Scholar 

  35. A.M. Wazwaz, Adomians decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166, 652–663 (2005)

    Google Scholar 

  36. A. Yigit, M. Pakdemirli, New perturbation iteration solutions for Bratu-type equations. Comput. Math. Appl. 59, 2802–2808 (2010)

    Article  Google Scholar 

  37. S. Zheng, L. Jingjing, W. Hongtao, Genetic algorithm based wireless vibration control of multiple modal for a beam by using photostrictive actuators. Appl. Math. Model. 38(2), 437–450 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Naval Research Board (NRB), New Delhi for financial support (Project No.: NRB-447/SC/19-20). We also acknowledge SASTRA Deemed University, Thanjavur for extending infrastructure support to carry out the study. Our sincere thanks are due to Mr. Selvaganesan and Mr. Bharatwaja srinivasan, NSTL-Lab, Visakhapatnam for providing the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hariharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, G., Hariharan, G., Selvaganesan, V. et al. A new spectral collocation method for solving Bratu-type equations using Genocchi polynomials. J Math Chem 59, 1837–1850 (2021). https://doi.org/10.1007/s10910-021-01264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-021-01264-0

Keywords

Navigation