Skip to main content
Log in

Chaotic behavior of the CML model with respect to the state and coupling parameters

  • Brief Communication
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The main aim of this paper is the study of dynamical properties of the Laplacian-type coupled map lattice induced by the logistic family on a periodic lattice depending on two parameters: the state parameter of the logistic map and the coupling constant. For this purpose, tools like maximal Lyapunov exponent, approximate entropy, and the 0–1 test for chaos are introduced and applied to numerical simulations performed using a supercomputer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. A. Adamatzky, J. Holley, L. Bull, C.B. De Lacy, On computing in fine-grained compartmentalised Belousov–Zhabotinsky medium. Chaos Solitons Fractals 44(10), 779–790 (2011)

    Article  CAS  Google Scholar 

  2. K.I. Agladze, V.I. Krinsky, A.M. Pertsov, Chaos in the non-stirred Belousov Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures. Nature 308, 834–835 (1984)

    Article  CAS  Google Scholar 

  3. L.A. Bunimovich, E.A. Carlen, On the problem of stability in lattice dynamical systems. J. Differ. Equ. 123, 213–229 (1995)

    Article  Google Scholar 

  4. R. Carvalho, B. Fernandez, R.V. Mendes, From synchronization to multistability in two coupled quadratic maps. Phys. Lett. Sect. A Gen. At. Solid State Phys. 285, 327–338 (2001)

    CAS  Google Scholar 

  5. P. Collet, J.P. Eckmann, Iterated maps on the interval as dynamical systems (Birkhaser, Boston, 1980)

    Google Scholar 

  6. M. Ding, W. Yang, Stability of synchronous chaos and on–off intermittency in coupled map lattices. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 56, 4009 (1997)

    CAS  Google Scholar 

  7. V.A. Dobrynskii, Critical sets and properties of endomorphisms built by coupling of two identical quadratic mappings. J. Dyn. Control Syst. 5(2), 227–254 (1999)

    Article  Google Scholar 

  8. B. Fernandez, M. Hang, Coupling two unimodal maps with simple kneading sequences. Ergod. Theory Dyn. Syst. 24(1), 107–125 (2004)

    Article  Google Scholar 

  9. G.A. Gottwald, I. Melbourne, A new test for chaos in deterministic systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2042), 603–611 (2004)

    Article  Google Scholar 

  10. G.A. Gottwald, I. Melbourne, On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)

    Article  Google Scholar 

  11. J.L.G. Guirao, M. Lampart, Positive entropy of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48(1), 66–71 (2010)

    Article  CAS  Google Scholar 

  12. J.L.G. Guirao, M. Lampart, Chaos of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48(1), 159–164 (2010)

    Article  CAS  Google Scholar 

  13. L. Gyorgyi, R.J. Field, Z. Noszticzius, W.D. McCormick, H.L. Swinney, Confirmation of high flow rate chaos in the Belousov–Zhabotinsky reaction. J. Phys. Chem. A 96, 1228–1233 (1992)

    Article  CAS  Google Scholar 

  14. G. He, A. Lambert, R. Lima, Wavelike patterns in one-dimensional coupled map lattices. Physica D Nonlinear Phenom. 103(1–4), 404–411 (1997)

    Article  Google Scholar 

  15. J.F. Heagy, N. Platt, S.M. Hammel, Characterization of on–off intermittency. Physica D Nonlinear Phenom. 49, 1140 (1994)

    CAS  Google Scholar 

  16. J. Jost, M.P. Joy, Spectral properties and synchronization in coupled map lattices. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 65, 16201 (2002)

    CAS  Google Scholar 

  17. K. Kaneko, Theory and applications of coupled map lattices (Wiley, New York, 1993)

    Google Scholar 

  18. K. Kaneko, Pattern dynamics in spatiotemporal chaos: pattern selection, diffusion of defect and pattern competition intermittency. Physica D Nonlinear Phenom. 34, 1–41 (1989)

    Article  Google Scholar 

  19. K. Kaneko, Overview of coupled map lattices. Chaos Interdiscip. J. Nonlinear Sci. 2, 279–282 (1992)

    Article  Google Scholar 

  20. H. Kantz, A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185(1), 77–87 (1994)

    Article  Google Scholar 

  21. F. Khellat, A. Ghaderi, N. Vasegh, iYorke chaos and synchronous chaos in a globally nonlocal coupled map lattice. Chaos Solitons Fractals 44(11), 934–939 (2011)

    Article  Google Scholar 

  22. M. Lampart, T. Martinovic, A survey of tools detecting the dynamical properties of one-dimensional families. Adv. Electr. Electron. Eng. 15(2), 304–313 (2017)

    Google Scholar 

  23. M. Lampart, P. Oprocha, Chaotic sub-dynamics in coupled logistic maps. Physica D Nonlinear Phenom. 335, 45–53 (2016)

    Article  Google Scholar 

  24. A.L. Lloyd, The coupled logistic map: a simple model for the effects of spatial heterogeneity on population dynamics. J. Theor. Biol. 173(3), 217–230 (1995)

    Article  Google Scholar 

  25. W.W. Lin, C.C. Peng, C.S. Wang, Synchronization in coupled map lattices with periodic boundary condition. Int. J. Bifurc. Chaos 9(8), 1635–1652 (1999)

    Article  Google Scholar 

  26. T. Martinovic, Chaos 01: 0–1 test for chaos. R package version 1.1.1. (2018). https://CRAN.R-project.org/package=Chaos01

  27. O.V. Noskov, A.D. Karavaev, V.P. Kazakov, S.I. Spivak, Chaos in a simulated Belousov–Zhabotinsky reaction. Mendeleev Commun. 4(3), 82–85 (1994)

    Article  Google Scholar 

  28. Y. Oono, M. Kohmoto, Discrete model of chemical turbulence. Phys. Rev. Lett. 55(27), 2927–2931 (1985)

    Article  CAS  PubMed  Google Scholar 

  29. S.M. Pincus, Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88(6), 2297–2301 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. N. Platt, E.A. Spiegel, C. Tresser, On-off intermittency: a mechanism for bursting. Phys. Rev. Lett. 70(3), 279–282 (1993)

    Article  CAS  PubMed  Google Scholar 

  31. R Core Team, R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018). https://www.R-project.org/

  32. N. Romero, J. Silva, R. Vivas, On a coupled logistic map with large strength. J. Math. Anal. Appl. 415(1), 346–357 (2014)

    Article  Google Scholar 

  33. M. Sabeti, S. Katebi, R. Boostani, Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif. Intell. Med. 47(3), 263–274 (2009)

    Article  PubMed  Google Scholar 

  34. J. Vandermeer, A. Kaufmann, Models of coupled population oscillators using 1-D maps. J. Math. Biol. 37, 178–202 (1998)

    Article  Google Scholar 

  35. R.L. Viana, C. Grebogi, S.E. Pinto, S.R. Lopes, A.M. Batista, J. Kurths, Bubbling bifurcation: loss of synchronization and shadowing breakdown in complex systems. Physica D Nonlinear Phenom. 206, 94–108 (2005)

    Article  Google Scholar 

  36. F.H. Willeboordse, K. Kaneko, Bifurcations and spatial chaos in an open flow model. Phys. Rev. Lett. 73, 533–536 (1994)

    Article  CAS  PubMed  Google Scholar 

  37. F.H. Willeboordse, Timedelayed map as a model for open fluid flow. Chaos Interdiscip. J. Nonlinear Sci. 2(3), 423–426 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) Project “IT4Innovations excellence in science—LQ1602“; by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations Project “IT4Innovations National Supercomputing Center—LM2015070“; by SGC Grant No. SP2019/125 “Qualification and quantification tools application to dynamical systems”, VŠB - Technical University of Ostrava, Czech Republic, Grant of SGS No. SP2019/84, VŠB - Technical University of Ostrava, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Lampart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lampart, M., Martinovič, T. Chaotic behavior of the CML model with respect to the state and coupling parameters. J Math Chem 57, 1670–1681 (2019). https://doi.org/10.1007/s10910-019-01023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01023-2

Keywords

Mathematics Subject Classification

Navigation