Skip to main content
Log in

Coulomb repulsion, point-like nuclear charges, Dirac paradox, soft nuclear charge density and hypermultiplet nuclear repulsion

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A discussion about the classical Coulomb repulsion via point-like nuclear charges, usually employed within Born–Oppenheimer approximation, leads to the description of Dirac paradox: an inconsistency found when describing nuclear charges by means of Dirac’s distributions and computing with them nuclear Coulomb repulsion integrals. The way of overcoming Dirac paradox is bound to the description of soft Gaussian nuclear charge density and also to adopting a nuclear hypermultiplet Coulomb repulsion formulation. Such theoretical prospect produces a quantum mechanically compliant but simple algorithm in order to compute nuclear repulsion, which also appears to be consistently related to classical Coulomb repulsion energy, while avoiding singularities when nuclei collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born, R. Oppenheimer, Ann. Phys. 84, 457–484 (1927)

    Article  CAS  Google Scholar 

  2. D. Andrae, Phys. Rep. 336, 413–525 (2000)

    Article  CAS  Google Scholar 

  3. E. Besalú, R. Carbó-Dorca, J. Math. Chem. 49, 2231–2243 (2011)

    Article  Google Scholar 

  4. R. Carbó-Dorca, J. Math. Chem. 51, 1092–1098 (2013)

    Article  Google Scholar 

  5. Ll Amat, R. Carbó-Dorca, J. Comput. Chem 18, 2023–2029 (1997)

    Article  CAS  Google Scholar 

  6. Ll Amat, R. Carbó-Dorca, J. Comput. Chem. 20, 911–920 (1999)

    Article  CAS  Google Scholar 

  7. Ll Amat, R. Carbó-Dorca, J. Chem. Inf. Comput. Chem. Sci 40, 1188–1198 (2000)

    Article  CAS  Google Scholar 

  8. E. Besalú, R. Carbó-Dorca, J. Mol. Graph. Mod. 39, 39–49 (2013)

    Article  Google Scholar 

  9. E. Besalú, R. Carbó-Dorca, J. Math. Chem. 51, 1771–1783 (2013)

    Article  Google Scholar 

  10. R. Carbó-Dorca, Indian J. Chem. 53A, 1043–1051 (2014)

    Google Scholar 

  11. H. Weinstein, P. Politzer, S. Srebrenik, Theor. Chim. Acta 38, 159–163 (1975)

    Article  CAS  Google Scholar 

  12. V.R. Saunders, in Computational Techniques in Quantum Chemistry and Molecular Physics, ed. by G.H.F. Diercksen, B.T. Sutcliffe, A. Veillard (D. Reidel Pub. Co., Dordrecht (Holland), 1975)

    Google Scholar 

  13. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Pub. Inc., New York, 1972)

    Google Scholar 

  14. R. Carbó, L. Domingo, J. Gregori, Int. J. Quant. Chem. 17, 725–736 (1980)

    Article  Google Scholar 

  15. W. Heisenberg, Zeits. Phys. 49, 619–636 (1928)

    Article  CAS  Google Scholar 

  16. C.C.J. Roothaan, Rev. Mod. Phys. 23, 69–89 (1951)

    Article  CAS  Google Scholar 

  17. J. Arents, Chem. Phys. Lett. 12, 489–492 (1972)

    Article  CAS  Google Scholar 

  18. P.W. Ayers, Theor. Chem. Acc. 115, 253–256 (2006)

    Article  CAS  Google Scholar 

  19. P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 123, 2007–2017 (2001)

    Article  CAS  Google Scholar 

  20. J.S.M. Anderson, J. Melin, P.W. Ayers, J. Chem. Theory Comput. 3, 358–374 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Carbó-Dorca.

Appendix

Appendix

1.1 Incomplete gamma function

A set of polynomial expressions to accurately compute the incomplete gamma functions needed here was published by Arents [17]. Also, knowing any higher order term, then a unit order inferior function can be easily obtained by means of the descending iteration [11]:

$$\begin{aligned} F_p \left( x \right) =\frac{1}{2p+1}\left( {2xF_{p+1} \left( x \right) +e^{-x}} \right) \end{aligned}$$

Then, one can also write:

$$\begin{aligned} F_0 \left( {\frac{\theta }{2}R_{IJ}^2 } \right) -\exp \left( {-\frac{\theta R_{IJ}^2 }{2}} \right) =\theta R_{IJ}^2 F_1 \left( {\frac{\theta }{2}R_{IJ}^2 } \right) \end{aligned}$$

1.2 Derivatives

Derivatives of the incomplete gamma function and error function are not at all difficult to obtain. They can be useful for general geometry optimization purposes.

1.2.1 A of the incomplete gamma function

The derivatives of the incomplete gamma function of any order can be expressed [12] in terms of the incomplete gamma function of a unit superior order:

$$\begin{aligned} \frac{\partial F_p \left( x \right) }{\partial x}=-F_{p+1} \left( x \right) . \end{aligned}$$

1.2.2 B of the error function

Derivatives of the error function are readily computed in terms of Hermite polynomials [13]:

$$\begin{aligned} \forall n=0,1,2,\ldots : \frac{d^{n+1}}{dx^{n+1}}erf\left( x \right) =\left( {-1} \right) ^{n}\frac{2}{\sqrt{\pi }}H_n \left( x \right) e^{-x^{2}}. \end{aligned}$$

Thus, the first derivative term, owing to the fact that also: \(H_0 \left( x \right) =1\) holds, corresponds to:

$$\begin{aligned} \frac{d}{dx}erf\left( x \right) =\frac{2}{\sqrt{\pi }}e^{-x^{2}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbó-Dorca, R. Coulomb repulsion, point-like nuclear charges, Dirac paradox, soft nuclear charge density and hypermultiplet nuclear repulsion. J Math Chem 53, 590–603 (2015). https://doi.org/10.1007/s10910-014-0436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0436-8

Keywords

Navigation