Skip to main content
Log in

New Nordhaus-Gaddum-type results for the Kirchhoff index

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Let G be a connected graph. The resistance distance between any two vertices of G is defined as the net effective resistance between them if each edge of G is replaced by a unit resistor. The Kirchhoff index is the sum of resistance distances between all pairs of vertices in G. Zhou and Trinajstić (Chem Phys Lett 455(1–3):120–123, 2008) obtained a Nordhaus-Gaddum-type result for the Kirchhoff index by obtaining lower and upper bounds for the sum of the Kirchhoff index of a graph and its complement. In this paper, by making use of the Cauchy-Schwarz inequality, spectral graph theory and Foster’s formula, we give better lower and upper bounds. In particular, the lower bound turns out to be tight. Furthermore, we establish lower and upper bounds on the product of the Kirchhoff index of a graph and its complement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiener H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  CAS  Google Scholar 

  2. Bavelas A.: A mathematical model for small group structures. Hum. Organiz. 7(3), 16–30 (1948)

    Google Scholar 

  3. Klein D.J., Randić M.: Resistance distance. J. Math. Chem. 12, 81–95 (1993)

    Article  Google Scholar 

  4. Zhu H.-Y., Klein D.J., Lukovits I.: Extensions of the Wiener number. J. Chem. Inf. Comput. Sci. 36, 420–428 (1996)

    CAS  Google Scholar 

  5. Gutman I., Mohar B.: The Quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci. 36, 982–985 (1996)

    CAS  Google Scholar 

  6. Estrada E., Hatano N.: Topological atomic displacements, Kirchhoff and Wiener indices of molecules. Chem. Phys. Lett. 486, 166–170 (2010)

    Article  CAS  Google Scholar 

  7. Xiao W.J., Gutman I.: Resistance distance and Laplacian spectrum. Theor. Chem. Acc. 110, 284–289 (2003)

    CAS  Google Scholar 

  8. Ivanciuc O., Klein D.J.: Building-block computation of Wiener-type indices for the virtual screening of combinatorial libraries. Croat. Chem. Acta 75, 577–601 (2002)

    CAS  Google Scholar 

  9. Ivanciuc O., Klein D.J.: Computing Wiener-type indices for virtual libraries generated from heteroatom-containing building blcoks. J. Chem. Inf. Comput. Sci. 42, 8–22 (2002)

    CAS  Google Scholar 

  10. Klein D.J.: Graph geometry, graph metrics and Wiener. MATCH Commun. Math. Comput. Chem. 35, 7–27 (1997)

    Google Scholar 

  11. Klein D.J.: Resistance-distance sum rules. Croat. Chem. Acta 75, 633–649 (2002)

    CAS  Google Scholar 

  12. Klein D.J., Dos̆lić T., Bonchev D.: Vertex-weightings for distance moments and thorny graphs. Discrete Appl. Math. 155, 2294–2303 (2007)

    Article  Google Scholar 

  13. Klein D.J., Lukovits I., Gutman I.: On the definition of the hyper-wiener index for cycle-containing structures. J. Chem. Inf. Comput. Sci. 35, 50–52 (1995)

    CAS  Google Scholar 

  14. Palacios J.L.: Closed-form formulas for Kirchhoff index. Int. J. Quantum Chem. 81, 135–140 (2001)

    Article  CAS  Google Scholar 

  15. Palacios J.L.: Foster’s formulas via probability and the Kirchhoff index. Method Comput. Appl. Prob. 6, 381–387 (2004)

    Article  Google Scholar 

  16. Yang Y.J., Jiang X.Y.: Unicyclic graphs with extremal Kirchhof index. MATCH Commun. Math. Comput. Chem. 60, 107–120 (2008)

    Google Scholar 

  17. Zhang H.P., Jiang X.Y., Yang Y.J.: Bicyclic graphs with extremal Kirchhoff index. MATCH Commun. Math. Comput. Chem. 61, 697–712 (2009)

    Google Scholar 

  18. Zhang H.P., Yang Y.J.: Resistance distance and Kirchhoff index in circulant graphs. Int. J. Quantum Chem. 107, 330–339 (2007)

    Article  CAS  Google Scholar 

  19. Zhang H.P., Yang Y.J., Li C.W.: Kirchhoff index of composite graphs. Discrete Appl. Math. 107, 2918–2927 (2009)

    Article  Google Scholar 

  20. Zhang W., Deng H.Y.: The second maximal and minimal Kirchhoff indices of unicyclic graphs. MATCH Commun. Math. Comput. Chem. 61, 683–695 (2009)

    Google Scholar 

  21. Zhou B., Trinajestić N.: A note on Kirchhoff index. Chem. Phys. Lett. 455(1-3), 120–123 (2008)

    Article  CAS  Google Scholar 

  22. Zhou B., Trinajestić N.: On resistance-distance and Kirchhoff index. J. Math. Chem. 46(1), 283–289 (2009)

    Article  CAS  Google Scholar 

  23. Zhou B., Trinajestić N.: The Kirchhoff index and the matching number. Int. J. Quantum Chem. 109(13), 2978–2981 (2009)

    Article  CAS  Google Scholar 

  24. Nordhaus E.A., Gaddum J.W.: On complementary graphs. Am. Math. Monthly 63, 175–177 (1956)

    Article  Google Scholar 

  25. Alavi Y., Behzard M.: Complementary graphs and edge chromatic numbers. SIAM J. Appl. Math. 20, 161–163 (1971)

    Article  Google Scholar 

  26. Chartrand G., Schuster S.: On the independence numbers of complementary graphs. Trans. New York Acad. Sci. Ser. II 36, 247–251 (1974)

    Google Scholar 

  27. Goddard W., Henning M.A.: Nordhaus-Gaddum bounds for independent domination. Discrete Math. 268, 299–302 (2003)

    Article  Google Scholar 

  28. Hong Y., Shu J.: A sharp upper bound for the spectral radius of the Nordhas-Gaddum type. Discrete Math. 211, 229–232 (2000)

    Article  Google Scholar 

  29. Liu H., Lu M., Tian F.: On the ordering of trees with the general Randić index of the Nordhaus-Gaddum type. MATCH Commun. Math. Comput. Chem. 55, 419–426 (2006)

    CAS  Google Scholar 

  30. Zhang L., Wu B.: The Nordhaus-Goddum-type inequalities for some chemical indices. MATCH Commun. Math. Comput. Chem. 54(1), 189–194 (2005)

    CAS  Google Scholar 

  31. Zhou B., Gutman I.: Nordhaus-Gaddum-type relations for the energy and Laplacian energy of graphs. Bull. Cl. Sci. Math. Nat. Sci. Math. 134, 1–11 (2007)

    Google Scholar 

  32. Zhou B.: On sum of powers of the Laplacian eigenvalues of graphs. Linear Algebra Appl. 429, 2239–2246 (2008)

    Article  Google Scholar 

  33. Cameron P.J.: Strongly regular graphs. In: Beineke, L.W., Wilson, R.J. (eds) Selected Topics in Graph Theory, pp. 337–360. Academic Press, London (1979)

    Google Scholar 

  34. Godsil C., Royle G.: Algebric Graph Theory. Springer, New York (2001)

    Google Scholar 

  35. van Lint J.H., Wilson R.M.: A Course in Combinatorics. Cambridge University Press, New York (1992)

    Google Scholar 

  36. Cvetkovic D., Doob M., Sachs H.: Spectra of Graphs: Theory and Application. Academic Press, New York (1980)

    Google Scholar 

  37. Foster R.M.: The average impedance of an electrical network. In: Edwards, J.W. (ed.) Contributions to Applied Mechanics, pp. 333–340. Ann Arbor, Michigan (1949)

    Google Scholar 

  38. Anderson W.N., Morley T.D.: Eigenvalues of the Laplacian of a graph. Lin. Multilin. Algebra 18, 141–145 (1985)

    Article  Google Scholar 

  39. Bondy J.A., Murty U.S.R.: Graph Theory with Applications. North Holland, Amsterdam (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Zhang, H. & Klein, D.J. New Nordhaus-Gaddum-type results for the Kirchhoff index. J Math Chem 49, 1587–1598 (2011). https://doi.org/10.1007/s10910-011-9845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9845-0

Keywords

Navigation