Skip to main content
Log in

Globally attractive oscillations in open monosubstrate allosteric enzyme reactions

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Here we study the dynamical properties of glycolytic and other similar biochemical oscillation-generating processes by means of the analysis of a model proposed by Golbdeter and Lefever (Bioph J 13:1302–1315, 1972) in a reduced form proposed by Keener and Sneyd (Mathematical physiology, chap 1, Springer Verlag, Berlin, 2009). After showing that the orbits of the system are bounded, we give some conditions for the existence of oscillations and for the global arrest of them. Then, after deriving an equivalent Lienard-Newton’s equation we assess uniqueness and the global stability of the arising limit cycle. Finally, we shortly investigate the possibility of breaking of the spatial symmetry. Some biological remarks end the work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D.: Molecular Biology of the Cell. Garland, NewYork (1994)

    Google Scholar 

  2. Decroly O., Goldbeter A.: Birhythmicity, chaos, and other patterns of temporal selforganization in a multiply regulated biochemical system. Proc. Natl Acad. Sci. USA 79, 6917–6921 (1982)

    Article  CAS  Google Scholar 

  3. D’Onofrio A.: Mathematical analysis of the Tyson model of the regulation of the cell division cycle. Nonlinear Anal. 62, 817–831 (2005)

    Article  Google Scholar 

  4. A. D’Onofrio, Uniqueness of glycolytic oscillations suggested by Selkovć6s model. J. Math. Chem. (2010) doi:10.1007/s10210-010-9674-6

  5. Duysens L.N.M., Amesz J.: Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim. Biophys. Acta 24, 19–26 (1957)

    Article  CAS  Google Scholar 

  6. Edelstein-Keshet L.: Mathematical Models in Biology. SIAM publishing, Philadelphia (2004)

    Google Scholar 

  7. Erle D., Mayer K.H., Plesser T.: The existence of stable limit cycles for enzymatic reactions with positive feedbacks. Math. Biosc. 44, 191–208 (1978)

    Article  Google Scholar 

  8. Ghosh A., Chance B.: Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun. 16, 174–181 (1964)

    Article  CAS  Google Scholar 

  9. Golbdeter A., Lefever R.: Dissipative structures for an allosteric model. Bioph. J. 13, 1302–1315 (1972)

    Google Scholar 

  10. Goldbeter A., Moran F.: Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations. Eur. Biophys. J. 15, 277–287 (1988)

    Article  CAS  Google Scholar 

  11. Goldbeter A.: Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour. CambridgeUniversity Press, Cambridge (1996)

    Book  Google Scholar 

  12. Goldbeter A.: Biological Rythms as Temporally Dissipative Structures. In: Rice, S.A. (eds) Special Volume in Memory of Ilya Prigogine Advances in Chemical Physics, Volume 135, Wiley, London (2007)

    Google Scholar 

  13. Hale J.K., Kocack H.: Dynamics and Bifurcations. Springer, Heidelberg (2003)

    Google Scholar 

  14. Hess B., Boiteux A., Kruger J.: Cooperation of glycolytic enzymes. Adv. Enzyme Regul. 7, 149–167 (1969)

    Article  CAS  Google Scholar 

  15. Hwang T.-W., Tsai H.-J.: Uniqueness of limit cycles in theoretical models of certain oscillating chemical reactions. J. Phys. A: Math. Gen. 38, 821–18223 (2005)

    Article  Google Scholar 

  16. Ibsen K.H., Schiller K.W.: Oscillations of nucleotides and glycolytic intermediates in aerobic suspensions of Ehrlich Ascites tumor cells. Biochim. Biophys. Acta 131, 405–407 (1967)

    Article  CAS  Google Scholar 

  17. Kar S., Ray D.S.: Nonlinear dynamics of glycolysis. Mod. Phys. Lett. B 18, 653–678 (2004)

    Article  CAS  Google Scholar 

  18. Keener J., Sneyd J.: Mathematical Physiology. Springer, Heidelberg (2009)

    Google Scholar 

  19. Kuang Y., Freedman H.I.: Uniqueness of limit cycles in gause-type models of predator-prey systems. Math. Biosc. 88, 67–84 (1988)

    Article  Google Scholar 

  20. Lotka A.J.: Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1599 (1920)

    Article  CAS  Google Scholar 

  21. Monod J., Wyman J.J., Changeaux J.P.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965)

    Article  CAS  Google Scholar 

  22. Murray J.D.: Mathematical Biology. Springer, Heidelberg (2003)

    Google Scholar 

  23. Nicolis G., Prigogine I.: Symmetry breaking and pattern selection in far–from–equilibrium systems. PNAS 78, 659–663 (1981)

    Article  CAS  Google Scholar 

  24. Othmer H.G., Aldridge J.A.: The effects of cell densities and metabolite flux on cellular dynamics. J. Math. Biol. 5, 169–200 (1978)

    CAS  Google Scholar 

  25. Poulsen A.K., Petersen M.O., Olsen L.F.: Single cell studies and simulation of cell-cell interactions using oscillating glycolysis in yeast cells. Biophys. Chem. 125, 275–280 (2007)

    Article  CAS  Google Scholar 

  26. Prigogine I., Lefever R., Goldbeter A., Herschowitz–Kaufman M.: Symmetry breaking instabilities in biological systems. Nature 223, 913–916 (1981)

    Article  Google Scholar 

  27. Prigogine I., Nicolis G.: Self-Organization in Non-Equilibrium Systems. Wiley, new York (1977)

    Google Scholar 

  28. Pye E.K., Chance B.: Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of S. carlsbergiensis. PNAS 55, 888–894 (1981)

    Article  Google Scholar 

  29. Sel’kov E.E.: Self-oscillations in glycolysis. Eur. J. Biochem. 4, 79–86 (1968)

    Article  Google Scholar 

  30. D.E. Strier, S.P. Dawson, Turing patterns inside cells. PLOS One, e1053 (2007)

  31. Winfree A.: The Geometry of Biological Time. 2nd edn. Springer, Heidelberg (2001)

    Google Scholar 

  32. Yang J.H., Yang L., Qu Z.L. et al.: Glycolytic oscillations in isolated rabbit ventricular myocytes. J. Biol. Chem. 283, 36321–36327 (2008)

    Article  CAS  Google Scholar 

  33. Zhifen Z.: Proof of the uniqueness theorem of generalized Lienard’s equations. App. Anal. 23, 63–76 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto d’Onofrio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

d’Onofrio, A. Globally attractive oscillations in open monosubstrate allosteric enzyme reactions. J Math Chem 49, 531–545 (2011). https://doi.org/10.1007/s10910-010-9757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-010-9757-4

Keywords

Navigation