Skip to main content
Log in

Centrality measure in graphs

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Centrality of an edge of a graph is proposed to be viewed as a degree of global sensitivity of a graph distance function (i.e., a graph metric) on the weight of the considered edge. For different choices of distance function, contact is made with several previous ideas of centrality, whence their different characteristics are clarified, and strengths or short-comings are indicated, via selected examples. The centrality based on “resistance distance” exhibits several nice features, and might be termed “amongness” centrality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jordan C.: Sur les assemblages des lignes. J. Reine Angew. Math. 70, 185–190 (1869)

    Google Scholar 

  2. Goldman A.J.: Optimal locations for centers in a network. Transp. Sci. 3, 352–360 (1969)

    Article  Google Scholar 

  3. Goldman A.J.: Optimal center location in simple networks. Transp. Sci. 5, 212–221 (1971)

    Article  Google Scholar 

  4. Hakimi S.L., Maheshwari S.N.: Optimal locations of centers in networks. Oper. Res. 20, 967–973 (1972)

    Article  Google Scholar 

  5. Hakimi S.L.: Optimum locations of switching centers and absolute centers and medians of a graph. Oper. Res. 12, 450–459 (1964)

    Article  Google Scholar 

  6. Slater P.J.: Centrality of Paths and Vertices in a Graph: Cores and Pits. In: Chartrand, G., Alavi, Y., Goldsmith, D.L., Lesniak-Foster, L., Lick., D.R. (eds) The Theory and Applications of Graphs, pp. 529–542. Wiley, NY (1981)

    Google Scholar 

  7. Brin S., Page L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 30, 107–117 (1998)

    Google Scholar 

  8. Brandes U., Kenis P., Wagner D.: Centrality in policy network drawings. Lect. Notes Comput. Sci. 1731, 250–258 (1999)

    Article  Google Scholar 

  9. Kleinberg J.M.: Authorative sources in a hyperlinked environment. J. Am. Comp. Mach. 46, 604–632 (1999)

    Google Scholar 

  10. Erkan G., Radev D.R.: LexRank: graph-based Lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22, 457–479 (2004)

    Google Scholar 

  11. Katz L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953)

    Article  Google Scholar 

  12. Shaw M.E.: Group structure and the behavior of individuals in small groups. J. Psych. 38, 139–149 (1954)

    Google Scholar 

  13. Mackenzie K.D.: Structural centrality in communications networks. Psychometrika 31, 17–25 (1966)

    Article  Google Scholar 

  14. Sabidussi G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)

    Article  CAS  Google Scholar 

  15. Bavelas A.: A mathematical model for small group structures. Hum. Organiz. 7, 16–30 (1948)

    Google Scholar 

  16. Bavelas A.: A mathematical model for group structures. Appl. Anthro. 7, 16–30 (1948)

    Google Scholar 

  17. Harary F.: Status and contrastatus. Sociometry 22, 23–43 (1959)

    Article  Google Scholar 

  18. Taylor M.: Influence structures. Sociometry 32, 490–502 (1969)

    Article  CAS  Google Scholar 

  19. Nieminen U.J.: On the centrality in a directed graph. Soc. Sci. Res. 2, 371–378 (1973)

    Article  Google Scholar 

  20. Bonacich P.: Factoring and weighting approaches to clique identification. J. Math. Sociol. 2, 113–120 (1972)

    Google Scholar 

  21. Freeman L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  22. Moxley R.L., Moxley N.F.: Determining point-centrality in uncontrived networks. Sociometry 37, 122–130 (1974)

    Article  Google Scholar 

  23. Freeman L.C.: Centrality in social networks—conceptual clarification. Soc. Netw. 1, 215–239 (1978/1979)

    Article  Google Scholar 

  24. Bonacich P.: Power and centrality: a family of measures. Am. J. Soc. 92, 1170–1182 (1987)

    Article  Google Scholar 

  25. Bonacich P.: Simultaneous group and individual centralities. Soc. Netw. 13, 155–168 (1991)

    Article  Google Scholar 

  26. White D.R., Borgatti S.P.: Betweenness centrality measures for directed graphs. Soc. Netw. 16, 335–346 (1994)

    Article  Google Scholar 

  27. Pitts F.R.: A graph theoretic approach to historical geography. Prof. Geogr. 17(5), 15–20 (1965)

    Article  Google Scholar 

  28. L.S. Shapely, A value for n-person games. in Contributions to the Theory of Games, vol. 2, Ann. Math. Stud. 28. ed. by H.W. Kuhn, H.W. Tucker (Princeton University Press, Princeton, NJ, 1953), pp. 307–317

  29. Sengoku M., Shinoda S.: A function measuring the centrality (or mediality) of an edge in an undirected network with edge capacity. Electron. Commun. Jpn. Part 1 69(11), 45–54 (1986)

    Article  Google Scholar 

  30. P. Hines, S. Blumsack A centrality measure for electrical networks. in Proceedings of the 41st Hawaii international conference on system sciences IEEE (2008)

  31. Bonchev D., Balaban A.T., Mekenyan O.: Generalization of the graph center concept, and derived topological centric indices. J. Chem. Inf. Comp. Sci. 20, 106–113 (1980)

    CAS  Google Scholar 

  32. Bonchev D., Mekenyan O., Balaban A.T.: Iterative procedure for the generalized graph center in polycyclic graphs. J. Chem. Inf. Comp. Sci. 29, 91–97 (1989)

    CAS  Google Scholar 

  33. Bonchev D., Balaban A.T.: Central vertices versus central rings in polycyclic systems. J. Math. Chem. 14, 287–304 (1993)

    Article  CAS  Google Scholar 

  34. Yoon J., Blumer A., Lee K.: An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics 22, 3106–3108 (2006)

    Article  CAS  Google Scholar 

  35. Yu H., Kim P.M., Sprecher E. , Trifonov V. , Gerstein M. : The importance of bottlenecks in protein net- works: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3, 713–720 (2007)

    CAS  Google Scholar 

  36. McRae B.H., Dickson B.G., Keitt T.H., Shah V.B.: Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008)

    Article  Google Scholar 

  37. Girvan M., Newman M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. USA 99, 7821–7826 (2002)

    Article  CAS  Google Scholar 

  38. Kishi G.: On centrality functions of a graph. Lect. Notes Comp. Sci. 108, 45–52 (1981)

    Google Scholar 

  39. Brandes U.: A faster algorithm for betweenness centrality. J. Math. Soc. 25, 163–177 (2001)

    Google Scholar 

  40. Eppstein D., Wang J.: Fast approximation of centrality. J. Graph Algorithms Appl. 8, 39–45 (2004)

    Google Scholar 

  41. Bader D.A., Kintali S., Madduri K., Mihail M.: Approximating betweenness centrality. Lect. Notes Comput. Sci. 4863, 124–137 (2007)

    Article  Google Scholar 

  42. Newman M.E.J.: A betweenness centrality based on random walks. Soc. Netw. 27, 39–54 (2005)

    Article  Google Scholar 

  43. Brandes U., Fleischer D.: Centrality measures based on current flow. Lect. Notes Comput. Sci. 3404, 533–544 (2005)

    Article  Google Scholar 

  44. E. Estrada, J.A. Rodriguez-Velazquez, Subgraph centrality in complex networks. Phys. Rev. E 71, 056103-1-9 (2005)

    Google Scholar 

  45. Rodriguez J.A., Estrada E., Gutierrez A.: Functional centrality in graphs. Lin. Multilin. Alg. 55, 293–302 (2007)

    Article  Google Scholar 

  46. Grassi R., Stefani S., Torriero A.: Some new results on the eigenvector centrality. J. Math. Soc. 31, 237–248 (2007)

    Article  Google Scholar 

  47. Everett M., Borgatti S.P.: Ego network betweennness. Soc. Netw. 27, 32–38 (2005)

    Article  Google Scholar 

  48. Bader D.A., Kintali S., Madduri K., Mihail M.: Approximating betweenness centrality. Lect. Notes Comput. Sci. 4863, 124–137 (2007)

    Article  Google Scholar 

  49. Everett M.G., Sinclair P., Dankelmann P.: Some centrality results new and old. J. Math. Soc. 28, 215–227 (2004)

    Article  Google Scholar 

  50. P. Sinclair, Betweenness centralization for bipartite graphs. J. Math. Soc. 29, 25–31; erratum, 29, 263–264 (2005)

    Google Scholar 

  51. Bolland J.M.: Sorting out centrality: an analysis of the performance of four centrality models in real and simulated networks. Soc. Netw. 10, 233–253 (1988)

    Article  Google Scholar 

  52. Freeman L.C., Borgatti S.P., White D.R.: Centrality in valued graphs: a measure of betweenness based on network flow. Soc. Netw. 13, 141–154 (1991)

    Article  Google Scholar 

  53. Maonsuur H., Storcken T.: Centers in connected undirected graphs. Oper. Res. 52, 54–64 (2004)

    Article  Google Scholar 

  54. Borgatti S.P.: Centrality and network flow. Soc. Netw. 27, 55–71 (2005)

    Article  Google Scholar 

  55. Borgatti S.P., Everett M.G.: A graph-theoretic perspective on centrality. Soc. Netw. 28, 466–484 (2006)

    Article  Google Scholar 

  56. Klein D.J., Randic M.: Resistance distance. J. Math. Chem. 12, 81–95 (1993)

    Article  Google Scholar 

  57. Klein D.J.: Geometry, graph metrics, & Wiener. Commun. Math. Chem. (MatCh) 35, 7–27 (1997)

    Google Scholar 

  58. Chebotarev P., Shamis E.: The forest metrics for graph vertices. Electron. Notes Discrete Math. 11, 98–107 (2002)

    Article  Google Scholar 

  59. Chebotarev P., Agaev R.: Forest matrices around the Laplacian matrix. Lin. Alg. Appl. 356, 253–274 (2002)

    Google Scholar 

  60. Wiener H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  CAS  Google Scholar 

  61. Wiener H.: Influence of interatomic forces on paraffin properties. J. Chem. Phys. 15, 766 (1947)

    Article  CAS  Google Scholar 

  62. Buckley F., Harary F.: Distance in Graphs. Addison-Wesley, Reading, MA (1989)

    Google Scholar 

  63. J.C. Maxwell, Chapter VI in Treatise on Electricity & Magnetism. (Oxford Clarendon Press, Oxford, 1891); reprinted by Dover

  64. Kirchoff G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen verteilhung galvanischer Störme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  65. Shapiro L.W.: An electrical lemma. Math. Mag. 60, 36–38 (1989)

    Article  Google Scholar 

  66. P.G. Doyle, J.L. Snell, Random walks & electrical networks (Math. Assoc. Am., Washington, DC, 1984)

  67. Babić D., Klein D.J., Lukovits I., Nikolic S., Trinajstic N.: Resistance-distance matrix: a computational algorithm & its application. Int. J. Quantum Chem. 90, 166–176 (2002)

    Article  CAS  Google Scholar 

  68. M. Fiedler, A geometric approach to the laplacian matrix of a graph. in Combinatorial and Graph-Theoretical Problems in Linear Algebra, ed. by R.A. Brualdi, S. Friedland, V. Klee (Springer, Berlin, 1991), pp. 73–98

  69. Klein D.J., Zhu H.-Y.: Distances and volumina for graphs. J. Math. Chem. 23, 179–195 (1998)

    Article  CAS  Google Scholar 

  70. D.J. Klein, Graph geometry via metrics. in Topology in Chemistry, ed. by D.H. Rouvray, R.B. King (Horwood, Chichester, 2002), pp. 292–317

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D.J. Centrality measure in graphs. J Math Chem 47, 1209–1223 (2010). https://doi.org/10.1007/s10910-009-9635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9635-0

Keywords

Navigation