Skip to main content
Log in

Analysis of a chemostat model with variable yield coefficient: Tessier kinetics

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We investigate a chemostat model in which the growth rate is given by a Tessier expression with a variable yield coefficient. We combine analytical results with path-following methods. The washout conditions are found. When washout does not occur we establish the conditions under which the reactor performance and reactor productivity are maximised. We also determine the parameter region in which oscillations may be generated in the reactor. We briefly discuss the implications of our results for comparing the performance of a single bioreactor against a cascade of two bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F :

Flowrate (l h−1)

K s :

Tessier constant (g l−1)

P :

Reactor productivity P  =  F· X s (g h−1)

P * :

Dimensionless reactor productivity \({P^* = \frac{P}{\alpha\mu_m K_sV}}\)(–)

S :

Substrate concentration (g l−1)

S * :

Dimensionless substrate concentration \({S_{i}^{*} = \frac{S_{i}}{K_{s}} }\)(–)

S 0 :

Substrate concentration in the feed (g l−1)

\({S_{0}^{*}}\) :

Dimensionless substrate concentration in the feed \({S_{0}^{*} = \frac{S_{0}}{K_{s}} }\)(–)

V :

Reactor volume (l)

X :

Cell mass concentration (g l−1)

X s :

Steady-state cell mass concentration (g l−1)

X * :

Dimensionless cell mass concentration \({X_{i}^{*} = \frac{X_{i}}{\alpha K_{s}} }\)(–)

\({X*_{\rm max}}\) :

The maximum (physically meaningful) value of the cell mass concentration on the no-washout solution branch (–)

X 0 :

Cell mass concentration in the feed (g l−1)

\({X_{0}^{*}}\) :

Dimensionless cell mass concentration in the feed \({X_{0}^{*} = \frac{X_{0}}{\alpha K_{s}} }\)(–)

\({X_2^*}\) :

Cell mass concentration in the second reactor of a cascade (–)

Y (S):

Cell mass yield coefficient (–)

t :

Time (h)

t * :

Dimensionless time t *μ m t (–)

α :

Constant in yield coefficient (–)

β :

Constant in yield coefficient (l g−1)

β * :

Dimensionless yield coefficient \({\beta^{*} = \frac{\beta K_{s}}{\alpha} }\)(–)

μ (S):

Specific growth rate (h−1)

μ m :

Maximum specific growth rate (h−1)

τ :

Residence time \({\tau_{i} = \frac{V_{i}}{F} (h)}\)

τ * :

Dimensionless residence time \({\tau_{i}^{*} = \mu_{m}\cdot\frac{V_{i}}{F}}\)(–)

\({\tau^{*}_{\rm max}}\) :

The value of τ *, should it exist, at which the dimensionless cell mass concentration obtains its maximum value \({(X_{\rm max}^*) }\)(–)

\({\tau^*_i}\) :

The dimensionless residence time in the ith bioreactor in a bioreactor cascade.

\({\tau^*_{t}}\) :

The total dimensionless residence time in a cascade of two bioreactors. Parameter values K s = 1.75 g l−1, α = 0.01, β = 0.03 l g−1μ m  = 0.3h−1. These give β * = 5.25

References

  • Tessier G.: Les lois quantitatives de la croissance. Annales de Physiologie et de Physiochimie Biologique 12, 527–573 (1936)

    Google Scholar 

  • Monod J.: The growth of bacterial culture. Annu. Rev. Microbiol. 3, 371–394 (1949)

    Article  CAS  Google Scholar 

  • H. Moser, The dynamics of bacterial populations maintained in the chemostat. Publication 614 (Carnegie Institution of Washington, Washington, 1958)

  • Contois D.E.: Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous cultures. J. Gen. Microbiol. 21, 40–50 (1959)

    CAS  Google Scholar 

  • Andrews J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrate. Biotechnol. Bioeng. 10(6), 707–724 (1968)

    Article  CAS  Google Scholar 

  • Balakrishnan A., Yang R.Y.K.: Improvement of chemostat performance via nonlinear oscillations. Part 2. Extension to other systems. ACH—Models Chem. 135(1–2), 1–18 (1998)

    CAS  Google Scholar 

  • Chen C.-C., Hwang C., Yang R.Y.K.: Performance enhancement and optimization of chemostat cascades. Chem. Eng. Sci. 50(3), 485–494 (1995)

    Article  CAS  Google Scholar 

  • Jianqiang S., Ray A.K.: Performance improvement of activated sludge wastewater treatment by nonlinear natural oscillations. Chem. Eng. Technol. 23(12), 1115–1122 (2000)

    Article  CAS  Google Scholar 

  • Ray A.J.: Performance improvement of a chemical reactor by non-linear natural oscillations. Chem. Eng. J. 59, 169–175 (1995)

    CAS  Google Scholar 

  • Yang R.Y.K., Su J.: Improvement of chemostat performance via nonlinear oscillations. Part 1: operation strategy. Bioprocess Eng. 9, 97–102 (1993)

    Article  CAS  Google Scholar 

  • Nelson M.I., Sidhu H.S.: Evaluating the performance of a cascade of two bioreactors. Chem. Eng. Sci. 61(10), 3159–3166 (2006) doi:10.1016/j.ces.2005.12.007

    Article  CAS  Google Scholar 

  • Sömezişik M., Tanyolaç D., Şeker S., Tanyolaç A.(1998) The double-substrate growth kinetics of Sulfolobus solfataricus a thermophilic sulfur-removing archeabacterium. Biochem. Eng. J. 1, 243–248

    Article  Google Scholar 

  • J. McHenry, A.G. Werker, Characterization of bioactivity in treatment wetlands utilising an enzymatic assay, in CSCE/EWRI of ASCE Environmental Engineering Conference, (2002) pp. 1–14

  • Yurt N., Sears J., Lewandowski Z.: Multiple substrate growth kinetics of Leptothrix disophora SP-6. Biotechnol. Prog. 18, 994–1002 (2002)

    Article  CAS  Google Scholar 

  • Beyenal H., Chen S.N., Lewandowski Z.: The double substrate growth kinetics of Pseudomonas aeruginosa. Enzyme Microb. Technol. 32, 92–98 (2003)

    Article  CAS  Google Scholar 

  • Crooke P.S., Wei C.-J., Tanner R.D.: The effect of the specific growth rate and yield expressions on the existence of oscillatory behaviour of a continuous fermentation model. Chem. Eng. Commun. 6(6), 333–347 (1980)

    Article  CAS  Google Scholar 

  • Essajee C.K., Tanner R.D.: The effect of extracellular variables on the stability of the continuous baker’s yeast-ethanol fermentation process. Process Biochem. 14, 16–25 (1979)

    CAS  Google Scholar 

  • Crooke P.S., Tanner R.D.: Hopf bifurcations for a variable yield continuous fermentation model. Int. J. Eng. Sci. 20(3), 439–443 (1982)

    Article  CAS  Google Scholar 

  • Agrawal P., Lee C., Lim H.C., Ramkrishna D.: Theoretical investigations of dynamic behaviour of isothermal continuous stirred tank biological reactors. Chem. Eng. Sci. 37, 453–462 (1982)

    Article  CAS  Google Scholar 

  • Balakrishnan A., Yang R.Y.K.: Self-forcing of a chemostat with self-sustained oscillations for product enhancement. Chem. Eng. Commun. 189(11), 1569–1585 (2002)

    Article  CAS  Google Scholar 

  • Nelson M.I., Sidhu H.S.: Analysis of a chemostat model with variable yield coefficient. J. Math. Chem. 38(4), 605–615 (2005)

    Article  CAS  Google Scholar 

  • Wu W., Chang H.-Y.: Output regulation of self-oscillating biosystems: model-based proportional-integral/proportional-integral-derivative (pi/pid) control approaches. Ind. Eng. Chem. Res. 46(12), 4282–4288 (2007)

    Article  CAS  Google Scholar 

  • Huang X.-C.: Limit cycles in a continuous fermentation model. J. Math. Chem. 5, 287–296 (1990)

    Article  CAS  Google Scholar 

  • Pilyugin S.S., Waltman P.: Multiple limit cycles in the chemostat with variable yield. Math. Biosci. 182, 151–166 (2003)

    Article  CAS  Google Scholar 

  • Sun S., Chen L.: Complex dynamics of a chemostat with variable yield and periodically impulsive perturbation on the substrate. J. Math. Chem. 43(1), 338–349 (2008)

    Article  CAS  Google Scholar 

  • Zhu L., Huang X.: Relative positions of limit cycles in the continuous culture vessel with variable yield. J. Math. Chem. 38(2), 119–128 (2005)

    Article  CAS  Google Scholar 

  • Zhu L., Huang X.: Multiple limit cycles in a continuous culture vessel with variable yield. Nonlinear Anal. 64, 887–894 (2006)

    Article  Google Scholar 

  • Huang X., Zhu L.: A three-dimensional chemostat with quadratic yields. J. Math. Chem. 38(3), 399–412 (2005)

    Article  CAS  Google Scholar 

  • Huang X., Wang Y., Zhu L.: Competition in the bioreactor with general quadratic yields when one competitor produces a toxin. J. Math. Chem. 39(2), 281–294 (2006)

    Article  CAS  Google Scholar 

  • Huang X., Zhu L., Chang E.H.C.: Limit cycles in a chemostat with general variable yields and growth rates. Nonlinear Anal.: Real World Appl. 8, 165–173 (2007)

    Article  Google Scholar 

  • Huang X., Zhu L.: A note on competition in the bioreactor with toxin. J. Math. Chem. 42(3), 645–659 (2007)

    Article  CAS  Google Scholar 

  • Zhu L.: Limit cycles in chemostat with constant yields. Math. Comput. Model. 45, 927–932 (2007)

    Article  Google Scholar 

  • Zhu L., Huang X., Su H.: Bifurcation for a functional yield chemostat when one competitor produces a toxin. J. Math. Anal. Appl. 329, 891–903 (2007)

    Article  Google Scholar 

  • Huang X., Zhu L., Chang E.H.C.: The 3-D Hopf bifurcation in bio-reactor when one competitor produces a toxin. Nonlinear Anal.: Real World Appl. 7, 1167–1177 (2006)

    Article  CAS  Google Scholar 

  • Suzuki S., Shimizu K., Matsubara M.: On the parameter-space classification of the dynamic behaviour of a continuous microbial flow reactor. Chem. Eng. Commun. 33, 325–335 (1985)

    Article  CAS  Google Scholar 

  • Shimizu K., Matsubara M.: Conditions for the phase-plane analysis of feedback control of chemostat. Biotechnol. Bioeng. 27(4), 519–524 (1985)

    Article  CAS  Google Scholar 

  • Wu S.-C., Shih S.-H., Liu H.-S.: Dynamic behaviour of double-substrate interactive model. J. Chin. Inst. Chem. Eng. 38, 107–115 (2007)

    Article  CAS  Google Scholar 

  • Nelson M.I., Sidhu H.S.: Reducing the emission of pollutants in food processing wastewaters. Chem. Eng. Process. 46(5), 429–436 (2007) doi:10.1016/j.cep.2006.04.012

    Article  CAS  Google Scholar 

  • M.I. Nelson, X.D. Chen, H.S. Sidhu, Reducing the emission of pollutants in industrial wastewater through the use of membrane reactors, in Aspects of Mathematical Modelling, ed. by R.J. Hosking, E. Venturino (Birkhäuser, Basel, 2008), pp. 95–107

  • Nelson M.I., Balakrishnan E., Sidhu H.S., Chen X.D.: A fundamental analysis of continuous flow bioreactor models and membrane reactor models to process industrial wastewaters. Chem. Eng. J. 140(1–3), 521–528 (2008)

    Article  CAS  Google Scholar 

  • Liu H.-S., Wu S.-C.: Periodical operation of continuous bioreactor. J. Chin. Inst. Chem. Eng. 26(5), 233–243 (1995)

    CAS  Google Scholar 

  • Liu H.-S., Wu S.-C., Lin S.-C.: Theoretical analysis of frequency response in continuous bioreactor. Chem. Eng. Commun. 164, 13–34 (1998)

    Article  CAS  Google Scholar 

  • Wu S.-C., Lin C.-C., Liu H.-S.: Theoretical analysis of a continuous bioreactor subject to cyclic feed concentration. J. Chin. Inst. Chem. Eng. 30(2), 151–160 (1999)

    CAS  Google Scholar 

  • E.J. Doedel, T.F. Fairgrieve, B. Sandstede, A.R. Champneys, Y.A. Kuznetsov, X. Wang, AUTO 97: continuation and bifurcation software for Ordinary Differential Equations (with HomCont) (1998), ftp://ftp.cs.concordia.ca/pub/doedel/auto

  • Gray B.F., Roberts M.J.: A method for the complete qualitative analysis of two coupled ordinary differential equations dependent on three parameters. Proc. Roy. Soc. A, 416, 361–389 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, M.I., Sidhu, H.S. Analysis of a chemostat model with variable yield coefficient: Tessier kinetics. J Math Chem 46, 303–321 (2009). https://doi.org/10.1007/s10910-008-9463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9463-7

Keywords

Navigation