Skip to main content

Advertisement

Log in

A novel conformation optimization model and algorithm for structure-based drug design

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we present a multi-scale optimization model and an entropy-based genetic algorithm for molecular docking. In this model, we introduce to the refined docking design a concept of residue groups based on induced-fit and adopt a combination of conformations in different scales. A new iteration scheme, in conjunction with multi-population evolution strategy, entropy-based searching technique with narrowing down space and the quasi-exact penalty function, is developed to address the optimization problem for molecular docking. A new docking program that accounts for protein flexibility has also been developed. The docking results indicate that the method can be efficiently employed in structure-based drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuntz I.D., Blaney J.M., Oatley S.J., Langridge R., Ferrin T.E.: J. Mol. Biol. 161, 269 (1982)

    Article  CAS  Google Scholar 

  2. Jones G., Willett P., Glen R.C., Leach A.R., Taylor R.: J. Mol. Biol. 267, 727 (1997)

    Article  CAS  Google Scholar 

  3. Oshiro C.M., Kuntz I.D., Dixon J.S.: J. Comput. Aided Mol. Des. 9, 113 (1995)

    Article  CAS  Google Scholar 

  4. Sherman C.J., Ogden R.C., Freer S.T.: J. Med. Chem. 38, 466 (1995)

    Article  Google Scholar 

  5. Kramer B., Rarey M., Lengauer T.: Proteins 37, 228 (1999)

    Article  CAS  Google Scholar 

  6. Palma P.N., Krippahl L., Wampler J.E., Moura J.J.: Proteins. 39, 178 (2000)

    Article  Google Scholar 

  7. Wang J., Kollman P.A., Kuntz I.D.: Proteins. 36, 1 (1999)

    Article  CAS  Google Scholar 

  8. Westhead D.R., Clark D.E., Murray C.W.: J. Comput. Aided Mol. Des. 11, 209 (1997)

    Article  CAS  Google Scholar 

  9. Carlson H.A., McCammon J.A.: Mol. Pharmacol. 57, 213 (2000)

    CAS  Google Scholar 

  10. Teague S.J.: Nat. Rev. Drug. Discov. 2, 527 (2003)

    Article  CAS  Google Scholar 

  11. Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., Shaw D.E., Francis P., Shenkin P.S.: J. Med. Chem. 47, 1739 (2004)

    Article  CAS  Google Scholar 

  12. Moustakas D.T., Lang P.T., Pegg S., Pettersen E., Kuntz I.D., Brooijmans N., Rizzo R.C.: J. Comput. Aided Mol. Des. 20, 601 (2006)

    Article  CAS  Google Scholar 

  13. Weiner S.J., Kollman P.A., Case D.A., Singh U.C., Ghio C., Alagona G., Profeta S., Weiner P.: J. Am. Chem. Soc. 106, 765 (1984)

    Article  CAS  Google Scholar 

  14. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J.: Adv. Drug. Dev. Rev. 23, 3 (1997)

    Article  CAS  Google Scholar 

  15. Brooijmans N., Kuntz I.D.: Annu. Rev. Biophys. Biomol. Struct. 32, 335 (2003)

    Article  CAS  Google Scholar 

  16. Knegtel R.M., Kuntz I.D., Oshiro C.M.: J. Mol. Biol. 266, 424 (1997)

    Article  CAS  Google Scholar 

  17. Osterberg F., Morris G.M., Sanner M.F., Olson A.J., Goodsell D.S.: Proteins. 46, 34 (2002)

    Article  CAS  Google Scholar 

  18. Frimurer T.M., Peters G.H., Iversen L.F., Andersen H.S., Moller N.P., Olsen O.H.: Biophys. J. 84, 2273 (2003)

    Article  CAS  Google Scholar 

  19. Yang A.Y., Kallblad P., Mancera R.L.: J. Comput. Aided Mol. Des. 18, 235 (2004)

    Article  CAS  Google Scholar 

  20. Cavasotto C.N., Abagyan R.A.: J. Mol. Biol. 337, 209 (2004)

    Article  CAS  Google Scholar 

  21. Sherman W., Day T., Jacobson M.P., Friesner R.A., Farid R.: J. Med. Chem. 49, 534 (2006)

    Article  CAS  Google Scholar 

  22. Lin J.H., Perryman A.L., Schames J.R., McCammon J.A.: Biopolymers. 68, 47 (2003)

    Article  CAS  Google Scholar 

  23. Tatsumi R., Fukunishi Y., Nakamura H.: J. Comput. Chem. 25, 1995 (2004)

    Article  CAS  Google Scholar 

  24. Jiang F., Kim S.H.: J. Mol. Biol. 219, 79 (1991)

    Article  CAS  Google Scholar 

  25. Venkayya V.B.: Int. J. Numer. Meth. Eng. 13, 203 (1978)

    Article  Google Scholar 

  26. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, Michigan, 1975)

  27. Shannon C.E.: Bell Syst. Tech. J. 27, 379 (1948)

    Google Scholar 

  28. Shannon C.E.: Bell Sys. Tech. J. 27, 623 (1948)

    Google Scholar 

  29. Sybyl (molecular modeling package), Version 6.8 (Tripos Associates: St. Louis, MO, 2000)

  30. Jain A.N.: J. Med. Chem. 46, 499 (2003)

    Article  CAS  Google Scholar 

  31. Verdonk M.L., Cole J.C., Hartshorn M.J., Murray C.W., Taylor R.D.: Proteins. 52, 609 (2003)

    Article  CAS  Google Scholar 

  32. Sousa S.F., Fernandes P.A., Ramos M.J.: Proteins. 65, 15 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hualiang Jiang or Xicheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, L., Li, H., Zhao, X. et al. A novel conformation optimization model and algorithm for structure-based drug design. J Math Chem 46, 182–198 (2009). https://doi.org/10.1007/s10910-008-9454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9454-8

Keywords

Navigation