Skip to main content
Log in

Two-center overlap integrals, three dimensional adaptive integration, and prolate ellipsoidal coordinates

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Numerical, adaptive algorithm evaluating the overlap integrals between the Numerical Type Orbitals (NTO) is presented. The described algorithm exploits the properties of the prolate ellipsoidal coordinates, which are the natural choice for two-center overlap integrals. The algorithm is designed for numerical atomic orbitals with the finite support. Since the cusp singularity of the atomic orbitals vanish in the prolate ellipsoidal coordinate system, the adaptive integration algorithm in \({\mathbb{R}^3}\) generates small number of subdivisions. The efficiency and reliability of the algorithm is demonstrated for the overlap integrals evaluated for the selected pairs of Slater Type Orbitals (STO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramer Ch.J.: Essentials of Computational Chemistry. Wiley, Wiltshire (2004)

    Google Scholar 

  2. Koch W., Holthausen M.C.: A Chemist’s Guide to Density Functional Theory. Wiley-VCH, New York (2000)

    Google Scholar 

  3. Boys S.F.: Electronic wave functions I. A general method of calculation for the stationary states of any molecular system. Proc. Roy. Soc. A 200, 542 (1950)

    Article  CAS  Google Scholar 

  4. Matsuoka O.: Molecular integrals over real solid spherical Gaussian-type functions. J. Chem. Phys. 108, 1063–1067 (1998)

    Article  CAS  Google Scholar 

  5. Helgaker T., Jorgensen P., Olsen J.: Molecular Electronic-Structure Theory. Wiley, New York (2000)

    Google Scholar 

  6. Silverstone H.J.: On the evaluation of two-center overlap and coulomb integrals with non-integer-n Slater type orbitals. J. Chem. Phys. 45, 4337–4341 (1966)

    Article  CAS  Google Scholar 

  7. Todd H.D., Kay K.G., Silverstone H.J.: Unified treatment of two-center overlap, coulomb, and kinetic-energy integrals. J. Chem. Phys. 53, 3951–3956 (1970)

    Article  CAS  Google Scholar 

  8. Talman J.D.: Expressions for overlap integrals of slater orbitals. Phys. Rev. A 48, 243 (1993)

    Article  CAS  Google Scholar 

  9. Filter E., Steinborn E.O.: Extremely compact formulas for molecular two-center one-electron integrals and coulomb integrals over slater-type atomic orbitals. Phys. Rev. A 18, 1 (1978)

    Article  CAS  Google Scholar 

  10. Filter E., Steinborn E.O.: The three-dimensional convolution of reduced bessel functions and other functions of physical interest. J. Math. Phys. 19, 79 (1978)

    Article  Google Scholar 

  11. Weniger E.J., Grotendorst J., Steinborn E.O.: Unified analytical treatment of overlap, two-center nuclear attraction, and coulomb integrals of b functions via the Fouriet transform method. Phys. Rev. A 33, 3688 (1986)

    Article  Google Scholar 

  12. Homeier H.H.H., Steinborn E.O.: On the evaluation of overlap integrals with exponential-type basis functions. Int. J. Quant. Chem. 42, 761 (1992)

    Article  CAS  Google Scholar 

  13. Artacho E., Sánchez-Portal D., Ordejón P., García A., Soler J.M.: Linear-scaling ab-initio calculations for large and complex systems. Phys. Stat. Sol. (b) 215, 809 (1999)

    Article  CAS  Google Scholar 

  14. Soler J.S., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D.: The SIESTA method for ab initio order-N material simulation. J. Phys.: Condens. Mat. 14, 2745 (2002)

    Article  CAS  Google Scholar 

  15. Talman J.D.: Optimization of numerical orbitals in molecular MO-LCAO calculations. Int. J. Quant. Chem. 95, 442–450 (2003)

    Article  CAS  Google Scholar 

  16. Andrae D.: Numerical self-consistent field method for polyatomic molecules. Mol. Phys. 99, 327–334 (2001)

    Article  CAS  Google Scholar 

  17. Ozaki T.: Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 67, 155108 (2003)

    Article  CAS  Google Scholar 

  18. Ozaki T., Kino H.: Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 69, 195113 (2004)

    Article  CAS  Google Scholar 

  19. Becke A.D.: A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88, 2547 (1988)

    Article  CAS  Google Scholar 

  20. Delley B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508 (1990)

    Article  CAS  Google Scholar 

  21. Lin Z., Jaffe J.E., Hess A.C.: Multicenter integration scheme for electronic structure calculations of periodic and nonperiodic polyatomic systems. J. Phys. Chem. A 103, 2117–2127 (1999)

    Article  CAS  Google Scholar 

  22. Treutler O., Ahlrichs R.: Efficient molecular numerical integration schemes. J. Chem. Phys. 102, 346–354 (1995)

    Article  CAS  Google Scholar 

  23. Yamamoto K., Ishikawa H., Fujima K., Iwasawa M.: An accurate single-center three-dimensional numerical integration and its application to atomic structure calculation. J. Chem. Phys. 106, 8769–8777 (1997)

    Article  CAS  Google Scholar 

  24. Ishikawa H., Yamamoto K., Fujima K., Iwasawa M.: An accurate numerical multicenter integration for molecular orbital theory. Int. J. Quant. Chem. 72, 509–523 (1999)

    Article  CAS  Google Scholar 

  25. Romanowski Z.: Numerical calculation of overlap and kinetic integrals in prolate spheroidal coordinates. Int. J. Quant. Chem. 108, 249–256 (2008)

    Article  CAS  Google Scholar 

  26. Romanowski Z.: Numerical calculation of overlap and kinetic integrals in prolate spheroidal coordinates, II. Int. J. Quant. Chem. 108, 487–492 (2008)

    Article  CAS  Google Scholar 

  27. Moon P., Spencer D.E.: A Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions. Springer, Berlin (1971)

    Google Scholar 

  28. Flammer C.: Spheroidal Wave Functions. Stanford University Press, Stanford (1957)

    Google Scholar 

  29. Hobson E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge (1955)

    Google Scholar 

  30. Arfken G.B., Weber H.J.: Mathematical Methods for Physicists. Academic Press, San Diego (1995)

    Google Scholar 

  31. Mulliken R.S., Rieke C.A., Orloff D., Orloff H.: Formulas and numerical tables for overlap integrals. J. Chem. Phys. 17, 1248 (1949)

    Article  CAS  Google Scholar 

  32. Roothaan C.C.J.: A study of two-center integrals useful in calculations on molecular structure, I. J. Chem. Phys. 19, 1445 (1951)

    Article  CAS  Google Scholar 

  33. Dooren P., Ridder L.: An adaptive algorithm for numerical integration over an N-dimensional cube. J. Comput. Appl. Math. 2, 207–217 (1976)

    Article  Google Scholar 

  34. Genz A.C., Malik A.A.: An adaptive algorithm for numerical integration over an N-dimensional rectangular region. J. Comput. Appl. Math. 6, 295–302 (1980)

    Article  Google Scholar 

  35. Shapiro H.D.: Increasing robustness in global adaptive quadrature through interval selection heuristics. ACM Trans. Math. Softw. 10, 117–139 (1984)

    Article  Google Scholar 

  36. Rice J.R.: A metalgorithm for adaptive quadrature. J. ACM 92, 61–82 (1975)

    Article  Google Scholar 

  37. Stroud A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, New York (1971)

    Google Scholar 

  38. Engels H.: Numerical Quadrature and Cubature. Academic Press, London (1980)

    Google Scholar 

  39. Cools R., Haegemans A.: On the construction of multi-dimensional embedded cubature formulae. Numer. Math. 55, 735–745 (1989)

    Article  Google Scholar 

  40. Rabinowitz P., Mantel F.: The application of integer programming to the computation of fully symmetric integration formulas in two and three dimensions, SIAM J. Numer. Anal. 14, 391–425 (1977)

    Article  Google Scholar 

  41. Espelid T.O.: On the construction of good fully symmetric integration rules. SIAM J. Numer. Anal. 24, 855–881 (1987)

    Article  Google Scholar 

  42. Steinborn E.O., Ruedenberg K.: Rotation and translation of regular and irregular solid spherical harmonics. Adv. Quant. Chem. 7, 1–81 (1973)

    Article  CAS  Google Scholar 

  43. Steinborn E.O.: Molecular integrals between real and between complex atomic orbitals. Adv. Quant. Chem. 7, 83–112 (1973)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Romanowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanowski, Z., Jalbout, A.F. Two-center overlap integrals, three dimensional adaptive integration, and prolate ellipsoidal coordinates. J Math Chem 46, 97–107 (2009). https://doi.org/10.1007/s10910-008-9401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9401-8

Keywords

Navigation