Skip to main content
Log in

Spectra of Conic Carbon Radicals

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Conic carbon radicals with non-trivial automorphism groups are topologically possible when the curvature originates from 1, 3 or 5 pentagons in the otherwise hexagonal graphene sheet. By splitting determinants of quotient graphs, we determine the bonding nature of the last occupied and first unoccupied Hückel orbitals of the radicals constituting the three infinite series with the most plausible topologies. Each member of the series with three pentagons at the tip has one electron in the first anti-bonding orbital, each member of the series with one or five pentagons at the tip has one vacancy in the last bonding orbital, and none of the radicals have any un-bonding orbital. Within the limits of the Hückel model, this implies, respectively, stable conic cations and anions. The quotient graphs also give the collected Hückel energy for each of the one-dimensional irreducible representations of the point groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hückel E. (1931) Z. Phys. 70: 204

    Article  Google Scholar 

  2. Fowler P.W., Steer J.I. (1987) J. Chem. Soc. Chem. Commun. 18: 1403

    Article  Google Scholar 

  3. Manolopoulus D.E., Woodall D.R., Fowler P.W. (1992) J. Chem. Soc. Faraday Trans. 88: 2427

    Article  Google Scholar 

  4. X. Fan, R. Buczko, A.A. Puretzky, D.D. Geohegan, J.Y. Howe, S.T. Pantelides and S.J. Pennycook, Phys. Rev. Lett. 90 (2003) 145501-1.

    Google Scholar 

  5. Ge M., Sattler K. (1994) Chem. Phys. Lett. 220: 192

    Article  CAS  Google Scholar 

  6. Krishnan A., Dujardin E., Treacy M.M.J., Hugdahl J. (1997). Nature 388: 451

    Article  CAS  Google Scholar 

  7. Kværner’s patent no PCT/NO98/00093 for production of micro domain particles by use of a plasma process.

  8. US Patent No. 6,290,753 B1 issued Sept. 18, 2001, to A. T. Skjeltorp and A. Maeland.

  9. H. Heiberg-Andersen, in: Handbook of Theoretical and Computational Nanotechnology, eds. M. Rieth and W. Schommers (American Scientific Publishers, 2006).

  10. Murrell J.N., Kettle S.F.A., Tedder J.M. (1978). The Chemical Bond. Wiley, New York

    Google Scholar 

  11. Mintmire J.W., Dunlap B.I., White C.T. (1992) Phys. Rev. Lett. 68: 631

    Article  PubMed  CAS  Google Scholar 

  12. Akagi K., Tamura R., Tsukada M., Itoh S., Ihara S. (1995) Phys. Rev. Lett. 74: 2307

    Article  PubMed  CAS  Google Scholar 

  13. Dresselhaus M.S., Dresselhaus G., Eklund P.C. (1995). Science of Fullerenes and Carbon Nanotubes. Academic Press, New York

    Google Scholar 

  14. Heiberg-Andersen H., Skjeltorp A.T. (2005) J. Math. Chem. 38: 589

    Article  CAS  Google Scholar 

  15. Kroto H.W. (1987). Nature 329: 529

    Article  CAS  Google Scholar 

  16. Klein D.J., Schmaltz T.G., Hite T.G., Seitz W.A. (1986) J. Am. Chem. Soc. 108: 1301

    Article  CAS  Google Scholar 

  17. Schmaltz T.G., Seitz W.A., Klein D.J., Hite T.G. (1988) J. Am. Chem. Soc. 110: 1113

    Article  Google Scholar 

  18. Taylor R. (1991) Tetrahedron Lett. 32: 3731

    Article  CAS  Google Scholar 

  19. Taylor R., Walton R.M. (1993). Nature 363: 685

    Article  CAS  Google Scholar 

  20. R.C. Haddon and K. Raghavachari, in: Buckministerfullerenes, eds. W.E. Billups and M.A. Ciufolini (VCH Press, New York, 1993).

  21. Raghavachari K., Rohlfing C.M. (1993) J. Phys. Chem. 96: 2463

    Article  Google Scholar 

  22. Ebbesen T.W. (1998) Acc. Chem. Res. 31: 558

    Article  CAS  Google Scholar 

  23. Treacy M.M.J., Kilian J. (2001) Mater. Res. Soc. Symp. Proc. 675: 1

    Google Scholar 

  24. Cvetković D.M., Doob M., Sachs H. (1980). Spectra of Graphs. Academic Press, New York

    Google Scholar 

  25. Bhatia R. (1997). Matrix Analysis. Springer-Verlag, New York

    Google Scholar 

  26. Godsil C., Royle G. (2001). Algebraic Graph Theory. Springer-Verlag, New York

    Google Scholar 

  27. Milić M. (1964) IEEE Trans. Circuit Theory CT-11: 423

    Google Scholar 

  28. H. Sachs, Habilitationsschrift Univ. Halle, Math.-Nat. Fak. (1963)

  29. Sachs H. (1964) Polynom. Publ. Math. Debrecen 11: 119

    Google Scholar 

  30. Spialter L. (1964) J. Chem. Doc. 4: 269

    Article  CAS  Google Scholar 

  31. Cvetković D.M., Gutman I., Trinajstić N. (1974) J. Chem. Phys. 61: 2700

    Article  Google Scholar 

  32. Asratian A.S., Denley T.M.J., Häggkvist R., Bollobas B. (1998). Bipartite Graphs and their Applications. Cambridge University Press, Cambridge

    Google Scholar 

  33. Gutman I., Trinajstić N. (1973) Croat. Chem. Acta 45: 539

    CAS  Google Scholar 

  34. Dewar M.S.J., Longuet-Higgins H.C. (1952) Proc. R. Soc. (London) A 214: 482

    Article  CAS  Google Scholar 

  35. Graovac A., Gutman I., Trinajstić N., Živković (1972) Theoret. Chim. Acta 26: 67

    Article  CAS  Google Scholar 

  36. Weyl H. (1911) Math. Ann. 71: 441

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Heiberg-Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiberg-Andersen, H., Skjeltorp, A.T. Spectra of Conic Carbon Radicals. J Math Chem 42, 707–727 (2007). https://doi.org/10.1007/s10910-006-9103-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9103-z

Keywords

AMS subject classification

Navigation