Skip to main content
Log in

Observation of Cavitation on Electron Bubbles at Small Negative Pressures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Acoustic cavitation is a powerful technique to probe electron bubbles inside the liquid helium. The critical pressure to explode a bubble depends on the number and quantum state of electrons inside the bubble and if the bubble is trapped on a vortex. Here, we report cavitation events that occur at pressure magnitudes approximately 70% lower compared to single electron bubbles. We have considered various possibilities, e.g., single electron bubbles trapped on vortex lines or primary electrons depositing the energy at the acoustic focus and compared the results of our experiments with past measurements reported in the literature. We consider the possibility these new species of bubbles are multielectron bubbles with a small (< 20) number of electrons and discuss future experiments to confirm the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.T. Sommer, Liquid helium as a barrier to electrons. Phys. Rev. Lett. 12(11), 271–273 (1964)

    Article  ADS  Google Scholar 

  2. H.J. Maris, Electrons in liquid helium. J. Phys. Soc. Jpn. 77(11), 111008 (2008)

    Article  ADS  Google Scholar 

  3. N. Yadav, V. Vadakkumbatt, H.J. Maris, A. Ghosh, Exploding and imaging of electron bubbles in liquid helium. J. Low Temp. Phys. 187(5–6), 618–626 (2017)

    Article  ADS  Google Scholar 

  4. V. Volodin, A. Khaikin, M. Edel’man, Development of instability and bubblon production on charged surface of helium. JETP Lett. 26(543), 11 (1977)

    Google Scholar 

  5. U. Albrecht, P. Leiderer, Multielectron bubbles in liquid helium. Eur. Lett. 3, 705–710 (1987)

    Article  ADS  Google Scholar 

  6. E.M. Joseph, V. Vadakkumbatt, A. Pal, A. Ghosh, High speed imaging of generation and collapse of multielectron bubbles in liquid helium. J. Low Temp. Phys. 175, 78–84 (2014)

    Article  ADS  Google Scholar 

  7. V. Vadakkumbatt, E. Joseph, A. Pal, A. Ghosh, Studying electrons on curved surfaces by trapping and manipulating multielectron bubbles in liquid helium. Nat. Commun. 5, 4571 (2014)

    Article  ADS  Google Scholar 

  8. E.M. Joseph, Multi-electron bubbles : a curved two-dimensional electron system in confinement, 2017

  9. V. Vadakkumbatt, Experimental Investigation of Multielectron Bubbles in Liquid Helium, Ph.D. Diss

  10. V.A. Akulichev, Acoustic cavitation in low-temperature liquids. Ultrasonics 24(1), 8–18 (1986)

    Article  Google Scholar 

  11. D.A. Misener, G.R. Hebert, Tensile strength of liquid helium II. Nature 177, 946–947 (1956)

    Article  ADS  Google Scholar 

  12. J.W. Beams, Tensile strengths of liquid argon, helium, nitrogen, and oxygen. Phys. Fluids 2(1), 1–4 (1959)

    Article  ADS  Google Scholar 

  13. J.W. Beams, Tensile strength of liquid helium II. Phys. Rev. 104(4), 880 (1956)

    Article  ADS  Google Scholar 

  14. J. Nissen, E. Bodegom, L. Brodie, J. Semura, Tensile strength of liquid He 4. Phys. Rev. B 40(10), 6617 (1989)

    Article  ADS  Google Scholar 

  15. Q. Xiong, H.J. Maris, Study of cavitation in superfluid helium-4 at low temperatures. J. Low Temp. Phys. 82(3–4), 105–118 (1991)

    Article  ADS  Google Scholar 

  16. M.S. Pettersen, S. Balibar, H.J. Maris, Experimental investigation of cavitation in superfluid 4He. Phys. Rev. B 49(17), 12062–12070 (1994)

    Article  ADS  Google Scholar 

  17. J.A. Nissen, E. Bodegom, L.C. Brodie, New measurements of the tensile strength of liquid 4He. Adv. Cryog. Eng. 33, 999–1003 (1988)

    Google Scholar 

  18. F. Caupin, S. Balibar, Cavitation pressure in liquid helium. Phys. Rev. B Condens. Matter Mater. Phys. 64(6), 064507 (2001)

    Article  ADS  Google Scholar 

  19. J. Classen, C.K. Su, M. Mohazzab, H.J. Maris, Electrons and cavitation in liquid helium. Phys. Rev. B 57(5), 3000–3010 (1998)

    Article  ADS  Google Scholar 

  20. S.C. Hall, J. Classen, C.K. Su, H.J. Maris, Experimental evidence for bubble nucleation on electrons in liquid4He. J. Low Temp. Phys. 101(3–4), 793–797 (1995)

    Article  ADS  Google Scholar 

  21. J. Classen, C.-K. Su, H.J. Maris, Observation of exploding electron bubbles in liquid helium. Phys. Rev. Lett. 77, 2006 (1996)

    Article  ADS  Google Scholar 

  22. A. Ghosh, H.J. Maris, Observation of a new type of electron bubble in superfluid helium. Phys. Rev. Lett. 95(26), 1–4 (2005)

    Article  Google Scholar 

  23. D. Konstantinov, H.J. Maris, Detection of excited-state electron bubbles in superfluid helium. Phys. Rev. Lett. 90(2), 3 (2003)

    Article  Google Scholar 

  24. D. Konstantinov, W. Homsi, J. Luzuriaga, C.-K. Su, M.A. Weilert, H.J. Maris, How does a bubble chamber work? J. Low Temp. Phys. 113(3–4), 485–490 (1998)

    Article  ADS  Google Scholar 

  25. G.M. Seidel, T.M. Ito, A. Ghosh, B. Sethumadhavan, Charge distribution about an ionizing electron track in liquid helium. Phys. Rev. C 89, 025808 (2014)

    Article  ADS  Google Scholar 

  26. H.J. Maris, A. Ghosh, Cavitation in superfluid helium possibly arising from Penning ionization of dimers. J. Low Temp. Phys. 134(1–2), 251–256 (2004)

    ADS  Google Scholar 

  27. J. Keto, M. Stockton, W. Fitzsimmons, Dynamics of atomic and molecular metastable states produced in electron-bombarded superfluid helium. Phys. Rev. Lett. 28, 792 (1972)

    Article  ADS  Google Scholar 

  28. H.J. Maris, D. Konstantinov, Bubbles in liquid helium containing electrons in excited states. J. Low Temp. Phys. 121, 615–620 (2000)

    Article  ADS  Google Scholar 

  29. Y. Yang, S. Sirisky, W. Wei, G.M. Seidel, H.J. Maris, Nucleation of bubbles by electrons in liquid helium-4. J. Low Temp. Phys. 192(1–2), 48–64 (2018)

    Article  ADS  Google Scholar 

  30. W. Wei, Z. Xie, H.J. Maris, Electron bubbles in liquid 4He containing a small number of electrons. Phys. Rev. B 89, 064504 (2014)

    Article  ADS  Google Scholar 

  31. J. Tempere, I.F. Silvera, J.T. Devreese, Multielectron bubbles in helium as a paradigm for studying electrons on surfaces with curvature. Surf. Sci. Rep. 62, 159–217 (2007)

    Article  ADS  Google Scholar 

  32. W. Guo, D. Jin, G.M. Seidel, H.J. Maris, Experiments with single electrons in liquid helium. Phys. Rev. B 150(2), 054515 (2009)

    Article  ADS  Google Scholar 

  33. R. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

Download references

Acknowledgements

We thank E. Joseph for the helpful discussions. This work was supported by MHRD, Government of India under Grant No. SPARC-1236. We thank MHRD, MeitY and DST for supporting the facilities at CeNSE. Ambarish Ghosh thanks Tata Trust for providing travel funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Vadakkumbatt, V. & Ghosh, A. Observation of Cavitation on Electron Bubbles at Small Negative Pressures. J Low Temp Phys 201, 97–105 (2020). https://doi.org/10.1007/s10909-020-02353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02353-1

Keywords

Navigation