Skip to main content
Log in

Binary Mixture of Quasi-One-Dimensional Dipolar Bose–Einstein Condensates with Tilted Dipoles

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We consider a \(^{168}\)Er–\(^{164}\)Dy dipolar mixture, trapped by a cigar-shaped harmonic potential. We derive the quasi-1D interspecies effective potential exhibiting the tilting angles and show that it is a quite natural generalization of a single dipolar gas. By solving the coupled Gross–Pitaevskii equations, we observe a transition from miscible to immiscible mixture as the orientations of the magnetic moments are varied. The atom numbers are also shown to lead to noticeable effects on the characteristics of this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.S. Petrov, M. Holzmann, G.V. Shlyapnikov, Phys. Rev. Lett. 84, 2551 (2000)

    Article  ADS  Google Scholar 

  2. L. Pricoupenko, H. Perrin, M. Olshanii (eds.), Proceedings of Euroschool on Quantum Gases in Low Dimensions (Les Houches, 2003)

  3. D.S. Petrov, D.M. Gangardt, G.V. Shlyapnikov, J. Phys. IV Fr. 116, 5–44 (2004)

    Article  Google Scholar 

  4. K. Merloti, R. Dubessy, L. Longchambon, A. Perrin, P.E. Pottie, V. Lorent, H. Perrin, N. J. Phys. 15, 033007 (2013)

    Article  Google Scholar 

  5. C. De Rossi, R. Dubessy, K. Merloti, M. de Goër, T. de Herve, A. Badr, L.L. Perrin, H. Perrin, N. J. Phys. 18, 062001 (2016)

    Article  Google Scholar 

  6. S. Sinha, L. Santos, Phys. Rev. Lett. 99, 140406 (2007)

    Article  ADS  Google Scholar 

  7. Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, J. Dalibard, Nature 441, 1118 (2006)

    Article  ADS  Google Scholar 

  8. B. Paredes, A. Widera, V. Murg, O. Mandel, Nature 429, 277 (2004)

    Article  ADS  Google Scholar 

  9. M.A. Baranov, Phys. Rep. 464, 71–111 (2008)

    Article  ADS  Google Scholar 

  10. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, T. Pfau, Rep. Prog. Phys. 72, 126401 (2009)

    Article  ADS  Google Scholar 

  11. F. Deuretzbacher, J.C. Cremon, S.M. Reimann, Phys. Rev. A81, 063616 (2010); Erratum, Phys. Rev. A87, 039903(E) (2013)

  12. V.I. Yukalov, E.P. Yukalova, Laser Phys. 26, 045501 (2016)

    Article  ADS  Google Scholar 

  13. B.C. Mulkerin, D.H.J. O’Dell, A.M. Martin, N.G. Parker, J. Phys. Conf. Ser. 497, 012025 (2014)

    Article  Google Scholar 

  14. D. Baillie, P.B. Blakie, N. J. Phys. 17, 033028 (2015)

    Article  Google Scholar 

  15. S. Giovanazzi, A. Gorlitz, T. Pfau, Phys. Rev. Lett. 89, 130401 (2002)

    Article  ADS  Google Scholar 

  16. S. Yi, L. You, Phys. Rev. A 61, 041604 (R) (2000)

  17. L. Santos, G.V. Shlyapnikov, P. Zoller, M. Lewenstein, Phys. Rev. Lett. 85, 1791 (2000)

    Article  ADS  Google Scholar 

  18. O. Dutta, P. Meystre, Phys. Rev. A 75, 053604 (2007)

    Article  ADS  Google Scholar 

  19. L. Santos, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 90, 250403 (2003)

    Article  ADS  Google Scholar 

  20. S. Ronen, D.C.E. Bortolotti, J.L. Bohn, Phys. Rev. Lett. 98, 030406 (2007)

    Article  ADS  Google Scholar 

  21. D. Edler, C. Mishra, F. Wachtler, R. Nath, S. Sinha, L. Santos, Phys. Rev. Lett. 119, 050403 (2017)

    Article  ADS  Google Scholar 

  22. A.D. Martin, P.B. Blakie, Phys. Rev. A 86, 053623 (2012)

    Article  ADS  Google Scholar 

  23. V.P. Mineev, Z. Eksp, Teor. Fiz. 67, 263–272 (1974)

    Google Scholar 

  24. T.-L. Ho, V.B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996)

    Article  ADS  Google Scholar 

  25. C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 78, 586 (1997)

    Article  ADS  Google Scholar 

  26. B.D. Esry, C.H. Greene, J.P. Burke, J.L. Bohn, Phys. Rev. Lett. 78, 3594 (1997)

    Article  ADS  Google Scholar 

  27. H. Pu, N.P. Bigelow, Phys. Rev. Lett. 80, 1130 (1998)

    Article  ADS  Google Scholar 

  28. A. Eckardt, C. Weiss, M. Holthaus, Phys. Rev. A 70, 043615 (2004)

    Article  ADS  Google Scholar 

  29. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phys. Rev. Lett. 97, 230403 (2006)

    Article  ADS  Google Scholar 

  30. G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, M. Inguscio, Phys. Rev. Lett. 100, 210402 (2008)

    Article  ADS  Google Scholar 

  31. S.-K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, P.S. Julienne, Phys. Rev. A 87, 010702(R) (2013)

    Article  ADS  Google Scholar 

  32. D.M. Jezek, P. Capuzzi, Phys. Rev. A 66, 015602 (2002)

    Article  ADS  Google Scholar 

  33. F. Riboli, M. Modugno, Phys. Rev. A 65, 063614 (2002)

    Article  ADS  Google Scholar 

  34. F. Minardi, G. Barontini, J. Catani, G. Lamporesi, Y. Nishida, M. Inguscio, J. Phys. Conf. Ser. 264, 012016 (2011)

    Article  Google Scholar 

  35. C. Ticknor, Phys. Rev. A 89, 053601 (2014)

    Article  ADS  Google Scholar 

  36. C.-H. Wu, Strongly Interacting Quantum Mixtures of Ultracold Atoms (Massachusetts Institute of Technology, Cambridge, 2013)

    Google Scholar 

  37. Z.B. Li, Y.M. Liu, D.X. Yao, C.G. Bao, J. Phys. B At. Mol. Opt. Phys. 50, 135301 (2017)

    Article  ADS  Google Scholar 

  38. S.K. Adhikari, P. Muruganandam, J. Phys. B 35, 2831 (2002)

    Article  ADS  Google Scholar 

  39. L.E. Young-S, S.K. Adhikari, Phys. Rev. A 86, 063611 (2012)

    Article  ADS  Google Scholar 

  40. L.E. Young, P. Muruganandam, S.K. Adhikari, J. Phys. B 44, 101001 (2011)

    Article  ADS  Google Scholar 

  41. R.K. Kumar, P. Muruganandam, L. Tomio, A. Gammal, J. Phys. Commun. 1, 035012 (2017)

    Article  Google Scholar 

  42. S.K. Adhikari, Phys. Rev. A 89, 013630 (2014)

    Article  ADS  Google Scholar 

  43. L. Wen, W.M. Liu, Y. Cai, J.M. Zhang, J. Hu, Phys. Rev. A 85, 043602 (2012)

    Article  ADS  Google Scholar 

  44. M. Raghunandan, C. Mishra, K. Lakomy, P. Pedri, L. Santos, R. Nath, Phys. Rev. A 92, 013637 (2015)

    Article  ADS  Google Scholar 

  45. C. Mishra, R. Nath, Phys. Rev. A 94, 033633 (2016)

    Article  ADS  Google Scholar 

  46. G. Gligoric, A. Maluckov, M. Stepic, L. Hadzievski, B.A. Malomed, Phys. Rev. A 82(3), 033624 (2010)

    Article  ADS  Google Scholar 

  47. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012). For more details and references, see A. Frisch, Dipolar quantum gases of erbium. Ph.D. dissertation, University of Innsbruck, Innsbruck (2014)

  48. M. Lu, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 104, 063001 (2010)

    Article  ADS  Google Scholar 

  49. M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 107, 190401 (2011)

    Article  ADS  Google Scholar 

  50. Y. Tang, N.Q. Burdick, K. Baumann, B.L. Lev, N. J. Phys. 17, 045006 (2015)

    Article  Google Scholar 

  51. P. Ilzhofer, G. Durastante, A. Patscheider, A. Trautmann, M.J. Mark, F. Ferlaino, arXiv:1711.07378v1 [cond-mat.quant-gas] (20 Nov 2017)

  52. D.M. Gangardt, G.V. Shlyapnikov, Phys. Rev. Lett. 90, 010401 (2003)

    Article  ADS  Google Scholar 

  53. D.M. Gangardt, G.V. Shlyapnikov, N. J. Phys. 5, 79 (2003)

    Article  Google Scholar 

  54. P. Muruganandam, S.K. Adhikari, Laser Phys. 22, 813–820 (2012)

    Article  ADS  Google Scholar 

  55. R.K. Kumar et al., Comput. Phys. Commun. 195, 117–128 (2015)

    Article  ADS  Google Scholar 

  56. K. Kanjilal, J.L. Bohn, D. Blume, Phys. Rev. A 75, 052705 (2007)

    Article  ADS  Google Scholar 

  57. P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 180, 1888 (2009)

    Article  ADS  Google Scholar 

  58. D. Vudragovic, Comput. Phys. Commun. 183, 2021–2025 (2012)

    Article  ADS  Google Scholar 

  59. K. Goral, L. Santos, Phys. Rev. A 66, 023613 (2002)

    Article  ADS  Google Scholar 

  60. S. Yi, L. You, Phys. Rev. A 63, 053607 (2001)

    Article  ADS  Google Scholar 

  61. R. Carles, P.A. Markowich, C. Sparber, Nonlinearity (2008)

  62. R. Carles, P.A. Markowich, C. Sparber, Nonlinearity 21, 11 (2008)

    Article  Google Scholar 

  63. D.-Y. Hua, X.-G. Li, Appl. Math. Comput. 234, 214–222 (2014)

    MathSciNet  Google Scholar 

  64. S.-Q. Li, X.-G. Li, D.-Y. Hua, Adv. Math. Phys. 2013, 517395. https://doi.org/10.1155/2013/517395

  65. G.V. Shlyapnikov, Private communication (Unpublished)

  66. M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 107, 190401 (2011)

    Article  ADS  Google Scholar 

  67. R.M. Wilson, C. Ticknor, J.L. Bohn, E. Timmermans, Phys. Rev. A 86, 033606 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hocine.

Appendix

Appendix

In this appendix, we provide the details for the computation of quasi-1D effective potential (2.11) which appears in Eqs. (2.82.9). It is given by the integral expression:

$$\begin{aligned} U^{(1D)}_{dd_{12}}(x_1-x_2)&=\frac{1}{\pi ^{2}l_{1}^2 l_{2}^2}\int d^2\rho _1 d^2\rho _2 \mathrm{d}x_2\nonumber \\&\quad U_{dd_{12}}^{(3D)}(\mathbf r _1-\mathbf r _2)\exp (-\rho _1^2 /l_1^2)\exp (-\rho _2^2 /l_2^2), \end{aligned}$$
(1)

where, up to a factor \(\mu _0\mu _1\mu _2/4\pi \), the 3D potential is given by [10]

$$\begin{aligned} U_{dd_{12}}^{(3D)}(\mathbf r )=\frac{(\mathbf e _{1}.\mathbf e _{2})r^2 -3(\mathbf e _{1}.\mathbf r )(\mathbf e _{2}.\mathbf r )}{r^{5}}. \end{aligned}$$
(2)

\(\mathbf e _{1}\) and \(\mathbf e _{2}\) are the unit vectors along the dipole directions with \(\frac{\mathbf{e }_{i}.\mathbf{r }}{r}=\cos \theta _{i}\) and \(\mathbf e _{1}.\mathbf e _{2}=\cos (\theta _{1}-\theta _{2})\) which leads to (2.4).

In order to compute the integrals appearing in (1), we introduce the relative (y, z) and the center of mass (CM) Cartesian coordinates (Y, Z) in the \(y-z\) plane:

$$\begin{aligned} y_{1,2}=&Y\pm \frac{m_{2,1}}{m_1+m_2}y\\ z_{1,2}=&Z\pm \frac{m_{2,1}}{m_1+m_2}z \end{aligned}$$
(3)

It is now straightforward to notice that the CM coordinates can be integrated out to yield an expression depending solely on the relative coordinates. Noting \(x=x_1-x_2\), we get

$$\begin{aligned} U^{(1D)}_{dd_{12}}(x)={\displaystyle 1\over \displaystyle \pi (l_1^2+l_2^2)}\int \mathrm{d}y\mathrm{d}z\, U_{dd_{12}}^{(3D)}(x, y, z) \exp \left( -{\displaystyle y^2+z^2\over \displaystyle l_1^2+l_2^2}\right) . \end{aligned}$$
(4)

Now, assuming that the dipoles are in the \(x-z\) plane, \(\mathbf e _i=(\cos \alpha _i,0,\sin \alpha _i)\), we may change back to polar coordinates (\(y=\rho \cos \phi \), \(z=\rho \sin \phi \)). One obtains the simple relations

$$\begin{aligned}&\cos (\theta _1-\theta _2)=\cos (\alpha _1-\alpha _2),\\&\cos \theta _i={\displaystyle x\cos \alpha _i+\rho \sin \phi \sin \alpha _i\over \displaystyle (x^2+\rho ^2)^{1/2}}, \end{aligned}$$
(5)

which allow us to simplify (4)

$$\begin{aligned} U^{(1D)}_{dd_{12}}(x)&={\displaystyle \cos (\alpha _1-\alpha _2)+3\cos (\alpha _1+\alpha _2)\over \displaystyle 2(l_1^2+l_2^2)}\nonumber \\&\quad \int _0^{\infty }\mathrm{d}\rho \,\rho {\displaystyle \rho ^2-2x^2 \over \displaystyle (x^2+\rho ^2)^{5/2}}\exp \left( -{\displaystyle \rho ^2\over \displaystyle l_1^2+l_2^2}\right) , \end{aligned}$$
(6)

and yield result (2.11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocine, A., Benarous, M. Binary Mixture of Quasi-One-Dimensional Dipolar Bose–Einstein Condensates with Tilted Dipoles. J Low Temp Phys 194, 209–223 (2019). https://doi.org/10.1007/s10909-018-2088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2088-8

Keywords

Navigation