Skip to main content
Log in

Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present a simple experimental scheme for estimating the cryogenic thermal transport properties of thin films using superconducting nanowires. In a parallel array of nanowires, the heat from one nanowire in the normal state changes the local temperature around adjacent nanowires, reducing their switching current. Calibration of this change in switching current as a function of bath temperature provides an estimate of the temperature as a function of displacement from the heater. This provides a method of determining the contribution of substrate heat transport to the cooling time of superconducting nanowire single-photon detectors. Understanding this process is necessary for successful electrothermal modeling of superconducting nanowire systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Appl. Phys. Lett. 79, 705–707 (2001). https://doi.org/10.1063/1.1388868

    Article  ADS  Google Scholar 

  2. F. Marsili, V.B. Verma, J.A. Stern, S. Harrington, A.E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M.D. Shaw, R.P. Mirin, S.W. Nam, Nat. Photon. 7, 210–214 (2013). https://doi.org/10.1038/nphoton.2013.13

    Article  ADS  Google Scholar 

  3. B.A. Korzh, Q-Y. Zhao, S. Frasca, J.P. Allmaras, T.M. Autry, E.A. Bersin, M. Colangelo, G.M. Crouch, A.E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J.D. Rezac, M.J. Stevens, E.E. Wollman, D. Zhu, P.D. Hale, K.L. Silverman, R. P. Mirin, S.W. Nam, M.D. Shaw, K.K. Berggren. (2018). arXiv:1804.06839

  4. J.D. Cohen, S.M. Meenehan, G.S. MacCabe, S. Groblacher, A.H. Safavi-Naeini, F. Marsili, M.D. Shaw, O. Painter, Nature 520, 522–525 (2015). https://doi.org/10.1038/nature14349

    Article  ADS  Google Scholar 

  5. L.K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015). https://doi.org/10.1103/PhysRevLett.115.250402

    Article  ADS  Google Scholar 

  6. D. Rosenberg et al., New J. Phys. 11, 045009 (2009). https://doi.org/10.1088/1367-2630/11/4/045009

    Article  ADS  Google Scholar 

  7. A. Biswas, J.M. Kovalik, M.W. Wright, W.T. Roberts, M.K. Cheng, K.J. Quirk, M. Srinivasan, M.D. Shaw, K.M. Birnbaum, LLCD operations using the optical communications telescope laboratory (OCTL), in Proceedings of SPIE, 8971, Free-Space Laser Communication and Atmospheric Propagation XXVI, 9710X (2014). https://doi.org/10.1117/12.2044087

  8. J.J. Renema, R. Gaudio, Q. Wang, Z. Zhou, A. Gaggero, F. Mattioli, R. Leoni, D. Sahin, M.J.A. de Dood, A. Fiore, M.P. van Exter, Phys. Rev. Lett. 112, 117604 (2014). https://doi.org/10.1103/PhysRevLett.112.117604

    Article  ADS  Google Scholar 

  9. D.Y. Vodolazov, Y.P. Korneeva, A.V. Semenov, A.A. Korneev, G.N. Goltsman, Phys. Rev. B 92, 104503 (2015). https://doi.org/10.1103/PhysRevB.92.104503

    Article  ADS  Google Scholar 

  10. A.G. Kozorezov, C. Lambert, F. Marsili, M.J. Stevens, V.B. Verma, J.P. Allmaras, M.D. Shaw, R.P. Mirin, S.W. Nam, Phys. Rev. B 96, 054507 (2017). https://doi.org/10.1103/PhysRevB.96.054507

    Article  ADS  Google Scholar 

  11. J.K.W. Yang, A.J. Kerman, E.A. Dauler, V. Anant, K.M. Rosfjord, K.K. Berggren, I.E.E.E. Trans, Appl. Supercond. 17, 581–585 (2007). https://doi.org/10.1109/TASC.2007.898660

    Article  ADS  Google Scholar 

  12. F. Marsili, F. Najafi, C. Herder, K.K. Berggren, Appl. Phys. Lett. 98, 093507 (2011). https://doi.org/10.1063/1.3560458

    Article  ADS  Google Scholar 

  13. H.B.G. Casimir, Physica 5, 495–500 (1938). https://doi.org/10.1016/S0031-8914(38)80162-2

    Article  ADS  Google Scholar 

  14. D.G. Cahill, H.E. Fischer, T. Klitsner, E.T. Swartz, R.O. Pohl, J. Vac. Sci. Technol. A 7, 1259 (1989). https://doi.org/10.1116/1.576265

    Article  ADS  Google Scholar 

  15. J.P. Allmaras, A.D. Beyer, R.M. Briggs, F. Marsili, M.D. Shaw, G.V. Resta, J.A. Stern, V.B. Verma, R.P. Mirin, S.W. Nam, W.H. Farr, in Conference on Lasers and Electro-Optics, JTh3E.7 (2017). https://doi.org/10.1364/CLEO_AT.2017.JTh3E.7

  16. A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman, B. Voronov, Appl. Phys. Lett. 88, 111116 (2006). https://doi.org/10.1063/1.2183810

    Article  ADS  Google Scholar 

  17. T. Klitsner, J.E. VanCleve, H.E. Fischer, R.O. Pohl, Phys. Rev. B 38, 7576–7594 (1987). https://doi.org/10.1103/PhysRevB.38.7576

    Article  ADS  Google Scholar 

  18. S. Mazumder, A. Majumdar, J. Heat Transf. 123, 749–759 (2001). https://doi.org/10.1115/1.1377018

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a NASA Space Technology Research Fellowship (Grant No. NNX16AM54H). AGK, FM, and MDS acknowledge financial support from DARPA. This work was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Allmaras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allmaras, J.P., Kozorezov, A.G., Beyer, A.D. et al. Thin-Film Thermal Conductivity Measurements Using Superconducting Nanowires. J Low Temp Phys 193, 380–386 (2018). https://doi.org/10.1007/s10909-018-2022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2022-0

Keywords

Navigation