Skip to main content
Log in

Thermal Kinetic Inductance Detectors for Ground-Based Millimeter-Wave Cosmology

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We show measurements of thermal kinetic inductance detectors (TKIDs) intended for millimeter-wave cosmology in the 200–300 GHz atmospheric window. The TKID is a type of bolometer which uses the kinetic inductance of a superconducting resonator to measure the temperature of the thermally isolated bolometer island. We measure bolometer thermal conductance, time constant, and noise equivalent power. We also measure the quality factor of our resonators as the bath temperature varies to show they are limited by effects consistent with coupling to two-level systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Keck Array and BICEP2 Collaborations, Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion of 95 GHz band. Phys. Rev. Lett. 116(3), 031302 (2016). https://doi.org/10.1103/PhysRevLett.116.031302

  2. M. Kamionkowski, E.D. Kovetz, The quest for B modes from inflationary gravitational waves. Ann. Rev. Astron. Astrophys. 54(1), 227–269 (2016). https://doi.org/10.1146/annurev-astro-081915-023433. (ISSN 0066-4146)

    Article  ADS  Google Scholar 

  3. G. Ulbricht, B.A. Mazin, P. Szypryt, A.B. Walter, Clint Bockstiegel, Bruce Bumble, Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy. Appl. Phys. Lett. 106(25), 251103 (2015). https://doi.org/10.1063/1.4923096

    Article  ADS  Google Scholar 

  4. O. Quaranta, T. Cecil, L. Gades, A. Miceli, Mitigation of position dependence in x-rays absorbers for thermal kinetic inductance detectors. J. Phys. Conf. Ser. 507(4), 042033 (2014). https://doi.org/10.1088/1742-6596/507/4/042033

    Article  Google Scholar 

  5. A. Miceli, T.W. Cecil, L. Gades, O. Quaranta, Towards x-ray thermal kinetic inductance detectors. J. Low Temp. Phys. 176(3–4), 497–503 (2014). https://doi.org/10.1007/s10909-013-1033-0

    Article  ADS  Google Scholar 

  6. T.W. Cecil, L. Gades, T. Madden, D. Yan, A. Miceli, Optimization of thermal kinetic inductance detectors for x-ray spectroscopy. IEEE Trans. Appl. Supercond. 25(3), 2400805 (2015). https://doi.org/10.1109/TASC.2014.2384995

    Article  ADS  Google Scholar 

  7. M.A. Lindeman, Resonator-bolometer theory, microwave read out, and kinetic inductance bolometers. J. Appl. Phys. 116(2), 024506 (2014). https://doi.org/10.1063/1.4890018

    Article  ADS  Google Scholar 

  8. P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, A broadband superconducting detector suitable for use in large arrays. Nature 425(6960), 817–821 (2003). https://doi.org/10.1038/nature02037

    Article  ADS  Google Scholar 

  9. H. McCarrick, D. Flanigan, G. Jones, B.R. Johnson, P. Ade, D. Araujo, K. Bradford, R. Cantor, G. Che, P. Day, S. Doyle, H. Leduc, M. Limon, V. Luu, P. Mauskopf, A. Miller, T. Mroczkowski, C. Tucker, J. Zmuidzinas, Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths. Rev. Sci. Instrum. 85(12), 123117 (2014). https://doi.org/10.1063/1.4903855

    Article  ADS  Google Scholar 

  10. B. Dober, J.A. Austermann, J.A. Beall, D. Becker, G. Che, H.M. Cho, M. Devlin, S.M. Duff, N. Galitzki, J. Gao, C. Groppi, G.C. Hilton, J. Hubmayr, K.D. Irwin, C.M. McKenney, D. Li, N. Lourie, P. Mauskopf, M.R. Vissers, Y. Wang, Optical demonstration of thz, dual-polarization sensitive microwave kinetic inductance detectors. J. Low Temp. Phys. 184, 1–7 (2015). https://doi.org/10.1007/s10909-015-1434-3

    Article  Google Scholar 

  11. P.A.R. Ade, R.W. Aikin, M. Amiri, D. Barkats, S.J. Benton, C.A. Bischoff, J.J. Bock, J.A. Bonetti, J.A. Brevik, I. Buder, E. Bullock, G. Chattopadhyay, G. Davis, P.K. Day, C.D. Dowell, L. Duband, J.P. Filippini, S. Fliescher, S.R. Golwala, M. Halpern, M. Hasselfield, S.R. Hildebrandt, G.C. Hilton, V. Hristov, H. Hui, K.D. Irwin, W.C. Jones, K.S. Karkare, J.P. Kaufman, B.G. Keating, S. Kefeli, S.A. Kernasovskiy, J.M. Kovac, C.L. Kuo, H.G. LeDuc, E.M. Leitch, N. Llombart, M. Lueker, P. Mason, K. Megerian, L. Moncelsi, C.B. Netterfield, H.T. Nguyen, R. O’Brient, R.W. Ogburn IV, A. Orlando, C. Pryke, A.S. Rahlin, C.D. Reintsema, S. Richter, M.C. Runyan, R. Schwarz, C.D. Sheehy, Z.K. Staniszewski, R.V. Sudiwala, G.P. Teply, J.E. Tolan, A. Trangsrud, R.S. Tucker, A.D. Turner, A.G. Vieregg, A. Weber, D.V. Wiebe, P. Wilson, C.L. Wong, K.W. Yoon, J. Zmuidzinas, Antenna-coupled TES bolometers used in BICEP2, Keck array, and Spider. Astrophys. J. 812(2), 176 (2015). https://doi.org/10.1088/0004-637X/812/2/176

    Article  ADS  Google Scholar 

  12. C.L. Kuo, J.J. Bock, J.A. Bonetti, J. Brevik, G. Chattopadhyay, P.K. Day, S. Golwala, M. Kenyon, A.E. Lange, H.G. LeDuc, H. Nguyen, R.W. Ogburn, A. Orlando, A. Transgrud, A. Turner, G. Wang, J. Zmuidzinas, in Antenna-Coupled TES Bolometer Arrays for CMB Polarimetry, vol. 7020, (International Society for Optics and Photonics, 2008), p. 70201I. https://doi.org/10.1117/12.788588

  13. J. Zmuidzinas, Superconducting microresonators: physics and applications. Ann. Rev. Condens. Matter Phys. 3(1), 169–214 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125022

    Article  Google Scholar 

  14. J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, H.G. Leduc, Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators. Appl. Phys. Lett. 92(15), 152505 (2008). https://doi.org/10.1063/1.2906373. (ISSN 0003-6951)

    Article  ADS  Google Scholar 

  15. M. Von Schickfus, S. Hunklinger, Saturation of the dielectric absorption of vitreous silica at low temperatures. Phys. Lett. A 64(1), 144–146 (1977). https://doi.org/10.1016/0375-9601(77)90558-8

    Article  ADS  Google Scholar 

  16. D. Flanigan, B.R. Johnson, M.H. Abitbol, S. Bryan, R. Cantor, P. Day, G. Jones, P. Mauskopf, H. McCarrick, A. Miller, J. Zmuidzinas, Magnetic field dependence of the internal quality factor and noise performance of lumped-element kinetic inductance detectors. Appl. Phys. Lett. 109(14), 143503 (2016). https://doi.org/10.1063/1.4964119

    Article  ADS  Google Scholar 

  17. R. Barends, J. Wenner, M. Lenander, Y. Chen, R.C. Bialczak, J. Kelly, E. Lucero, P. O’Malley, M. Mariantoni, D. Sank, H. Wang, T.C. White, Y. Yin, J. Zhao, A.N. Cleland, J.M. Martinis, J.J.A. Baselmans, Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits. Appl. Phys. Lett. 99(11), 113507 (2011). https://doi.org/10.1063/1.3638063

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by JPL’s Research and Technology Development Fund for Projects R.17.223.057 and R.17.223.058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Steinbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinbach, B.A., Bock, J.J., Nguyen, H.T. et al. Thermal Kinetic Inductance Detectors for Ground-Based Millimeter-Wave Cosmology. J Low Temp Phys 193, 88–95 (2018). https://doi.org/10.1007/s10909-018-2016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2016-y

Keywords

Navigation