Skip to main content
Log in

Effects of Noise-Induced Coherence on the Performance of Quantum Absorption Refrigerators

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study two models of quantum absorption refrigerators with the main focus on discerning the role of noise-induced coherence on their thermodynamic performance. Analogously to the previous studies on quantum heat engines, we find the increase in the cooling power due to the mechanism of noise-induced coherence. We formulate conditions imposed on the microscopic parameters of the models under which they can be equivalently described by classical stochastic processes and compare the performance of the two classes of fridges (effectively classical vs. truly quantum). We find that the enhanced performance is observed already for the effectively classical systems, with no significant qualitative change in the quantum cases, which suggests that the noise-induced-coherence-enhancement mechanism is caused by static interference phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In the quantum realm, the concept of absorption refrigerators, invented in 1858 by F. Carré, experienced a renaissance initiated by Levy and Kosloff [18] (see for example Refs. [19,20,21,22,23,24]). In all these studies, a specific model of quantum absorption refrigerator is investigated which cannot be mapped to the models considered by us. Inasmuch as we are aware, no model of absorption refrigerator which would contain degenerate energy levels and utilize the effect of noise-induced coherence has been studied in the literature yet.

  2. Let us note that Dorfman et al. [9] used the rotating wave approximation while assuming a \(\Delta \) of the same order as the standard transition frequencies between the energy levels in their numerical examples (see Table 1 in Ref. [9]).

  3. The linearity of system (12)–(15) only holds if all \(\gamma _{12}^{c}\)’s of various bath couplings to a given energy doublet posses the same phase, which we assume here. If not, one has to resort back to the original full set of Eqs. (7)–(11).

  4. A common nonzero phase of the two scalar products, which we have assumed in Sect. 2.3, can be absorbed into a complex transformation of the basis.

References

  1. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299(5608), 862 (2003). https://doi.org/10.1126/science.1078955

    Article  ADS  Google Scholar 

  2. R. Dillenschneider, E. Lutz, Europhys. Lett. (EPL) 88(5), 50003 (2009)

    Article  ADS  Google Scholar 

  3. O. Abah, E. Lutz, Europhys. Lett. (EPL) 106(2), 20001 (2014)

    Article  ADS  Google Scholar 

  4. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014). https://doi.org/10.1103/PhysRevLett.112.030602

    Article  ADS  Google Scholar 

  5. J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X 7, 031044 (2017). https://doi.org/10.1103/PhysRevX.7.031044

    Google Scholar 

  6. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. 108(37), 15097 (2011). https://doi.org/10.1073/pnas.1110234108

    Article  ADS  Google Scholar 

  7. A.A. Svidzinsky, K.E. Dorfman, M.O. Scully, Phys. Rev. A 84, 053818 (2011). https://doi.org/10.1103/PhysRevA.84.053818

    Article  ADS  Google Scholar 

  8. A. Svidzinsky, K. Dorfman, M. Scully, Coherent Opt. Phenom. 1, 7 (2012). https://doi.org/10.2478/coph-2012-0002

    ADS  Google Scholar 

  9. K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, Proc. Natl. Acad. Sci. 110(8), 2746 (2013). https://doi.org/10.1073/pnas.12126661

    Article  ADS  Google Scholar 

  10. T.V. Tscherbul, P. Brumer, Phys. Rev. Lett. 113, 113601 (2014). https://doi.org/10.1103/PhysRevLett.113.113601

    Article  ADS  Google Scholar 

  11. N. Killoran, S.F. Huelga, M.B. Plenio, J. Chem. Phys. 143(15), 155102 (2015). https://doi.org/10.1063/1.4932307

    Article  ADS  Google Scholar 

  12. D. Xu, C. Wang, Y. Zhao, J. Cao, New J. Phys. 18(2), 023003 (2016)

    Article  ADS  Google Scholar 

  13. A. Dodin, T.V. Tscherbul, P. Brumer, J. Chem. Phys. 145(24), 244313 (2016). https://doi.org/10.1063/1.4972140

    Article  ADS  Google Scholar 

  14. S.H. Su, C.P. Sun, S.W. Li, J.C. Chen, Phys. Rev. E 93, 052103 (2016). https://doi.org/10.1103/PhysRevE.93.052103

    Article  ADS  Google Scholar 

  15. A. Streltsov, G. Adesso, M.B. Plenio, Rev. Mod. Phys. 89, 041003 (2017). https://doi.org/10.1103/RevModPhys.89.041003

    Article  ADS  Google Scholar 

  16. C. Creatore, M.A. Parker, S. Emmott, A.W. Chin, Phys. Rev. Lett. 111, 253601 (2013). https://doi.org/10.1103/PhysRevLett.111.253601

    Article  ADS  Google Scholar 

  17. H.B. Chen, P.Y. Chiu, Y.N. Chen, Phys. Rev. E 94, 052101 (2016). https://doi.org/10.1103/PhysRevE.94.052101

    Article  ADS  Google Scholar 

  18. A. Levy, R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012). https://doi.org/10.1103/PhysRevLett.108.070604

    Article  ADS  Google Scholar 

  19. L.A. Correa, J.P. Palao, G. Adesso, D. Alonso, Phys. Rev. E 87, 042131 (2013). https://doi.org/10.1103/PhysRevE.87.042131

    Article  ADS  Google Scholar 

  20. J.B. Brask, N. Brunner, Phys. Rev. E 92, 062101 (2015). https://doi.org/10.1103/PhysRevE.92.062101

    Article  ADS  Google Scholar 

  21. L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Sci. Rep. 4, srep03949 (2014)

    ADS  Google Scholar 

  22. R. Silva, P. Skrzypczyk, N. Brunner, Phys. Rev. E 92, 012136 (2015). https://doi.org/10.1103/PhysRevE.92.012136

    Article  ADS  Google Scholar 

  23. J.O. González, J.P. Palao, D. Alonso, New J. Phys. 19(11), 113037 (2017)

    Article  Google Scholar 

  24. P.P. Hofer, M.T. Mitchison, arXiv preprint arXiv:1803.06133 (2018)

  25. C. Emary, N. Lambert, F. Nori, Rep. Prog. Phys. 77(1), 016001 (2014)

    Article  ADS  Google Scholar 

  26. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley, Hoboken, 1977)

    MATH  Google Scholar 

  27. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  28. W.E. Lamb, R.C. Retherford, Phys. Rev. 72, 241 (1947). https://doi.org/10.1103/PhysRev.72.241

    Article  ADS  Google Scholar 

  29. G. Bulnes Cuetara, M. Esposito, G. Schaller, Entropy 18(12), 447 (2016). https://doi.org/10.3390/e18120447

    Article  ADS  Google Scholar 

  30. H.J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer, Berlin, 2009)

    Google Scholar 

  31. K. Joulain, J. Drevillon, Y. Ezzahri, J. Ordonez-Miranda, Phys. Rev. Lett. 116, 200601 (2016). https://doi.org/10.1103/PhysRevLett.116.200601

    Article  ADS  Google Scholar 

  32. A. Friedenberger, E. Lutz, Europhys. Lett. (EPL) 120(1), 10002 (2017)

    Article  ADS  Google Scholar 

  33. K. Brandner, U. Seifert, Phys. Rev. E 93, 062134 (2016). https://doi.org/10.1103/PhysRevE.93.062134

    Article  ADS  Google Scholar 

  34. B. Karimi, J.P. Pekola, Phys. Rev. B 94, 184503 (2016). https://doi.org/10.1103/PhysRevB.94.184503

    Article  ADS  Google Scholar 

  35. K. Brandner, M. Bauer, U. Seifert, Phys. Rev. Lett. 119, 170602 (2017). https://doi.org/10.1103/PhysRevLett.119.170602

    Article  ADS  Google Scholar 

  36. A. Roulet, S. Nimmrichter, J.M. Arrazola, S. Seah, V. Scarani, Phys. Rev. E 95, 062131 (2017). https://doi.org/10.1103/PhysRevE.95.062131

    Article  ADS  Google Scholar 

  37. S. Nimmrichter, J. Dai, A. Roulet, V. Scarani, Quantum 1, 37 (2017). https://doi.org/10.22331/q-2017-12-11-37

    Article  Google Scholar 

  38. G. Maslennikov, S. Ding, R. Hablutzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich, arXiv preprint arXiv:1702.08672 (2017)

  39. M. Łobejko, J. Łuczka, J. Dajka, Phys. Rev. A 91, 042113 (2015). https://doi.org/10.1103/PhysRevA.91.042113

    Article  ADS  Google Scholar 

  40. C.W. Gardiner, P. Zoller, Quantum Noise, 2nd edn. (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Clive Emary, Radim Filip, Karel Netočný, and Artem Ryabov for valuable discussions. This work was supported by the Czech Science Foundation (Project No. 17-06716S). VH in addition gratefully acknowledges the support by the COST Action MP1209 and by the Alexander von Humboldt foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Holubec.

Additional information

The contents of this article was presented at the QTC2017 Conference on Mesoscopic Transport and Quantum Coherence and belongs to the Special Issue “Mesoscopic Transport and Quantum Coherence (QTC2017)” (J. Low Temp. Phys., June 2018).

Leggett–Garg inequalities

Leggett–Garg inequalities

If the system dynamics cannot be described by a classical stochastic process, this is revealed by the breaking of the so-called Leggett–Garg inequalities [25] for the two-time correlation function

$$\begin{aligned} C_{ij} = \left\langle Q(t_i)Q(t_j)\right\rangle \end{aligned}$$
(49)

of a bounded observable Q with possible outcomes lying in the interval \([-1,1]\), i.e., \(|Q|\le 1\). Let

$$\begin{aligned} K_n = C_{21} + C_{32} + \cdots + C_{n(n-1)} - C_{n1} \end{aligned}$$
(50)

denote the n-measurement Leggett–Garg string with \(t_1< t_2< \dots < t_n\). Then the following inequalities for \(n\ge 1\) must be fulfilled if the process in question is a classical stochastic one:

$$\begin{aligned} - (2n+1) \le K_{2n+1} \le 2n-1, \end{aligned}$$
(51)
$$\begin{aligned} - \,2n \le K_{2(n+1)} \le 2n. \end{aligned}$$
(52)

The values of the Leggett–Garg strings in inequalities (51)–(52) depend on the state of the system at the initial time \(t_1\). By choosing a quantum superposition as the initial state, these transient Leggett–Garg inequalities can be easily broken for the simplest systems. For example, considering a two-level system the maximum value of \(K_3 = 1.5 > 1\) can be obtained [39].

If one chooses as the initial condition the stationary state, the inequalities (51)–(52) reduce for equidistant measurement times to the condition

$$\begin{aligned} (n-1)\left\langle Q(t)Q(0)\right\rangle - \left\langle Q((n-1)t)Q(0)\right\rangle \le n-2\ . \end{aligned}$$
(53)

Thus the breaking of the stationary Leggett–Garg inequalities (53) is proof for the fact that the system dynamics can not be described by a classical stochastic process even in the steady state into which the system eventually spontaneously relaxes regardless of the initial condition.

Fig. 7
figure 7

V-type system used for testing quantumness of noise-induced coherence using the Leggett–Garg inequalities (Color figure online)

We have tested whether the dynamics of systems containing noise-induced coherence can result in breaking the inequalities (51) and (53) using the specific system depicted in Fig. 7. In this system, the transitions from the lower level to both degenerate upper levels is caused by a reservoir at temperature \(T_1\). In addition to this, the transitions between the levels \(\left| 2\right\rangle \) and \(\left| 3\right\rangle \) can be also caused by another reservoir at temperature \(T_2 \ne T_1\). We assume that the magnitudes of the dipole moment matrix elements corresponding to both transition channels equal to \(\gamma \) and that the coefficient \(\gamma _{12}\) which couples populations and coherences assumes its maximum value \(\gamma _{12} = \gamma \). Using the procedure described around Eqs. (12)–(15), we find that this system is described by the set of dynamical equations

$$\begin{aligned} \dot{\rho }_{11}= & {} n_1 \rho _{33} - (n_1+1)\rho _{11} - (n_1+1) \rho _R , \end{aligned}$$
(54)
$$\begin{aligned} \dot{\rho }_{22}= & {} (n_1+n_2)\rho _{33} - (n_1+n_2+2)\rho _{22} - (n_1+1) \rho _R, \end{aligned}$$
(55)
$$\begin{aligned} \dot{\rho }_{33}= & {} (n_1+1)\rho _{11} + (n_1+n_2+2)\rho _{22} - (2n_1+n_2)\rho _{33} + 2(n_1+1)\rho _R, \end{aligned}$$
(56)
$$\begin{aligned} \dot{\rho }_R= & {} n_1\rho _{33} - \frac{n_1+1}{2}(\rho _{11} + \rho _{22})- \left[ 2(n_1+1) + \frac{1}{2}(n_2+1)\right] \rho _R, \end{aligned}$$
(57)

with \(\dot{\rho }\equiv d\rho (t)/{\tilde{\gamma }} dt\) and the same meaning of the coefficients \(n_{1,2}\) and \({\tilde{\gamma }}\) as in Eqs. (16)–(20). Note that the bath at \(T_2\) which couples only with one transition channel does not increase the coupling between populations and coherences, but it causes faster decay of coherences. At long times, the system described by Eqs. (54)–(57) reaches a non-equilibrium steady state with nonzero noise-induced coherence. As can be checked by substituting parameters of the present model (\(\gamma _{1h}=\gamma _{2h}=\gamma _{12h}=\gamma _{2m}=\gamma \), \(\gamma _{1m}=\gamma _{12h}=0\)) to Eqs. (22)–(24), the coupling to the two reservoirs is chosen in such a way that there exists no basis in the degenerate subspace \(\{|1\rangle ,|2\rangle \}\) which would lead to decoupling of coherences and populations in the master equation.

Using the quantum regression theorem [40], we have calculated both the Leggett–Garg string \(K_3\) and the stationary time correlation function \(2\left\langle Q(t)Q(0)\right\rangle - \left\langle Q(2t)Q(0)\right\rangle \) for the set of observables of the type \(Q_1 = (\cos \theta \left| 1\right\rangle + \sin {\theta } \left| 2\right\rangle )(\cos \theta \left\langle 1\right| + \sin {\theta } \left\langle 2\right| )\) and \(Q_2 = |1\rangle \langle 1|+|2\rangle \langle 2|+|3\rangle \langle 3| - Q_1\) exploring a large part of the model parameter space. While the transient Leggett–Garg inequality (51) can be indeed broken by the present system if one chose a suitable initial condition, we were not able to break the stationary Leggett–Garg inequality (53). This suggests that the effect of noise-induced coherence in the steady state can be mimicked by a classical stochastic dynamics. This is actually in accord with the results of the study [16] where performance of a heat engine similar to that found in noise-induced-coherence works [6,7,8,9] has been achieved using diagonal elements of the density matrix only. For an example of a quantum engine which breaks the Legget–Garg inequalities, we refer to Ref. [32].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holubec, V., Novotný, T. Effects of Noise-Induced Coherence on the Performance of Quantum Absorption Refrigerators. J Low Temp Phys 192, 147–168 (2018). https://doi.org/10.1007/s10909-018-1960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1960-x

Keywords

Navigation