Skip to main content
Log in

Optical Characterization of the SPT-3G Camera

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with \(\sim \) 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Lewis et al., Phys. Rev. D 66(10), 103511 (2002). https://doi.org/10.1103/PhysRevD.66.103511

    Article  ADS  Google Scholar 

  2. D. Baumann et al., AIP Conf. Proc. 1141(1), 10 (2009). https://doi.org/10.1063/1.3160885

    Article  ADS  Google Scholar 

  3. K. Ichikawa, Phys. Rev. D 71(4), 043001 (2005). https://doi.org/10.1103/PhysRevD.71.043001

    Article  ADS  Google Scholar 

  4. J. Lesgourgues, Phys. Rev. D 73(4), 045021 (2006). https://doi.org/10.1103/PhysRevD.73.045021

    Article  ADS  Google Scholar 

  5. J. Carlstrom et al., Annu. Rev. Astron. Astrophys. 40(1), 643–680 (2002). https://doi.org/10.1146/annurev.astro.40.060401.093803

    Article  ADS  Google Scholar 

  6. R.J. Thornton et al., APJ Suppl. Ser. 227(2), 21 (2016). https://doi.org/10.3847/1538-4365/227/2/21

    Article  ADS  Google Scholar 

  7. K. Arnold et al., Proc. SPIE 7741, 77411E (2010). https://doi.org/10.1117/12.858314

    Article  Google Scholar 

  8. Z. Ahmed et al., SPIE Astronomical Telescope + Instrumentation, p. 91531N (2014). https://doi.org/10.1117/12.2057224

  9. C.D. Sheehy et al., arXiv preprint arXiv:1104.5516 (2011)

  10. J.P. Filippini et al., arXiv preprint arXiv:1106.2158 (2011)

  11. M.D. Niemack et al., J. Low Temp. Phys. 184(3–4), 746–753 (2016). https://doi.org/10.1007/s10909-015-1395-6

    Article  ADS  Google Scholar 

  12. G. Marsden et al., arXiv preprint arXiv:0805.4420 (2008)

  13. B.A. Benson et al., SPIE Astronomical Telescopes + Instrumentation, p. 91531P (2014). https://doi.org/10.1117/12.2057305

  14. A. Anderson et al., J. Low Temp. Phys. This special issue (2018)

  15. W. Everett et al., J. Low Temp. Phys. This special issue (2018)

  16. J.E. Carlstrom, Publ. Astron. Soc. Pac. 123(903), 568 (2011). https://doi.org/10.1086/659879

    Article  ADS  Google Scholar 

  17. Laird Technology, Product Eccosorb HR. http://www.eccosorb.com/products-eccosorb-hr.htm. Accessed 7 May 2018

  18. C.M. Posada et al., Supercond. Sci. Technol. 28, 094002 (2015). https://doi.org/10.1088/0953-2048/28/9/094002

    Article  ADS  Google Scholar 

  19. C.M. Posada et al., J. Low Temp. Phys. This special issue (2018). https://doi.org/10.1007/s10909-018-1924-1

  20. F.W. Carter et al., J. Low Temp. Phys. This special issue (2018). https://doi.org/10.1007/s10909-018-1910-7

  21. J. Ding et al., IEEE Trans. Appl. Supercond. 27, 2100204 (2017). https://doi.org/10.1109/TASC.2016.2639378

    Article  Google Scholar 

  22. J. Ding et al., J. Low Temp. Phys. This special issue (2018). https://doi.org/10.1007/s10909-018-1907-2

  23. A.N. Bender, SPIE Astronomical Telescopes+ Instrumentation, vol. 9914, p. 99141D (2016). https://doi.org/10.1117/12.2232146

  24. J. Avva et al., J. Low Temp. Phys. This special issue (2018)

  25. D.H. Martin, E. Puplett, Infrared Phys. 10(2), 105–109 (1970). https://doi.org/10.1016/0020-0891(70)90006-0

    Article  ADS  Google Scholar 

  26. A. Kogut et al., J. Cosmol. Astropart. Phys. 07, 025 (2011). https://doi.org/10.1088/1475-7516/2011/07/025

    Article  ADS  Google Scholar 

  27. K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection (Springer, Berlin, 2005), pp. 81–97. https://doi.org/10.1007/10933596_3

    Book  Google Scholar 

  28. Thomas Keating Ltd., Product Tessellating TeraHertz RAMs. http://www.terahertz.co.uk/index.php?option=com_content&view=article&id=145&Itemid=448. Accessed 7 May 2018

  29. Helioworks Inc., Product EF-8530. https://helioworks.com/wp-content/uploads/2016/08/EF-8530.pdf. Accessed 7 May 2018

Download references

Acknowledgements

The South Pole Telescope is supported by the National Science Foundation (NSF) through Grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center Grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, and the Kavli Foundation and the Gordon and Betty Moore Foundation Grant GBMF 947. Work at Argonne National Laboratory, including Laboratory Directed Research and Development support and use of the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science (DOE-OS) user facility, was supported under Contract No. DE-AC02-06CH11357. Work at Fermi National Accelerator Laboratory, a DOE-OS, HEP User Facility managed by the Fermi Research Alliance, LLC, was supported under Contract No. DE-AC02-07CH11359. NWH acknowledges support from NSF CAREER Grant AST-0956135. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Ade, P.A.R., Ahmed, Z. et al. Optical Characterization of the SPT-3G Camera. J Low Temp Phys 193, 305–313 (2018). https://doi.org/10.1007/s10909-018-1935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1935-y

Keywords

Navigation