Skip to main content
Log in

Superfluid Gap in Neutron Matter from a Microscopic Effective Interaction

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Correlated basis function (CBF) perturbation theory and the formalism of cluster expansions have been recently employed to obtain an effective interaction from a nuclear Hamiltonian strongly constrained by phenomenology. We report the results of a study of the superfluid gap in pure neutron matter, associated with the formation of Cooper pairs in the \(^1S_0\) channel. The calculations have been carried out using an improved version of the CBF effective interaction, in which three-nucleon forces are taken into account using a microscopic model. Our results show that a non-vanishing superfluid gap develops at densities in the range \(2 \times 10^{-4} \lesssim \rho /\rho _0 \lesssim 0.1\), where \(\rho _0 = 2.8 \times 10^{14}~\mathrm{g~cm}^{-3}\) is the equilibrium density of isospin-symmetric nuclear matter, corresponding mainly to the neutron-star inner crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.G. Alford, J.W. Clark, A. Sedrakian, Pairing in Fermionic Systems: Basic Concepts and Modern Applications (World Scientific, Singapore, 2006)

    MATH  Google Scholar 

  2. L.N. Cooper, Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189 (1956)

    Article  ADS  MATH  Google Scholar 

  3. C.-H. Yang, J.W. Clark, Superfluid condensation energy of neutron matter. Nucl. Phys. A 174, 49 (1971)

    Article  ADS  Google Scholar 

  4. N.H. March, W.H. Young, S. Sampanthar, The Many-Body Problem in Quantum Mechanics (Dover Publications, New York, 1967)

    Google Scholar 

  5. D.G. Yakovlev, C.J. Pethick, Neutron star cooling. Annu. Rev. Astron. Astrophys. 42, 169 (2004)

    Article  ADS  Google Scholar 

  6. S. Chandrasekhar, Solutions of two problems in the theory of gravitational radiation. Phys. Rev. Lett. 24, 611 (1970)

    Article  ADS  Google Scholar 

  7. J.L. Friedman, B.F. Schutz, Lagrangian perturbation theory of nonrelativistic fluids. Astrophys. J. 221, 937 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Andersson, K.D. Kokkotas, The r-mode instability in rotating neutron stars. Int. J. Mod. Phys. D 10, 381 (2001)

    Article  ADS  Google Scholar 

  9. N. Andersson, G.L. Comer, K. Glampedakis, How viscous is a superfluid neutron star core? Nucl. Phys. A 763, 212 (2005)

    Article  ADS  Google Scholar 

  10. L. Amundsen, E. Østgaard, Superfluidity of neutron matter: (I). Singlet pairing. Nucl. Phys. A 437, 487 (1985)

    ADS  Google Scholar 

  11. J. Wambach, T.L. Ainsworth, D. Pines, Quasiparticle interactions in neutron matter for applications in neutron stars. Nucl. Phys. A 555, 128 (1993)

    Article  ADS  Google Scholar 

  12. S. Cowell, V.R. Pandharipande, Weak interactions in hot nucleon matter. Phys. Rev. C 73, 025801 (2006)

    Article  ADS  Google Scholar 

  13. O. Benhar, M. Valli, Shear viscosity of neutron matter from realistic nucleon–nucleon interactions. Phys. Rev. Lett. 99, 232501 (2007)

    Article  ADS  Google Scholar 

  14. A. Lovato, O. Benhar, S. Fantoni, AYu. Illarionov, K.E. Schmidt, Density-dependent nucleon–nucleon interaction from three-nucleon forces. Phys. Rev. C 83, 054003 (2011)

    Article  ADS  Google Scholar 

  15. A. Lovato, C. Losa, O. Benhar, Weak response of cold symmetric nuclear matter at three-body cluster level. Nucl. Phys. A 901, 22 (2013)

    Article  ADS  Google Scholar 

  16. A. Lovato, O. Benhar, S. Gandolfi, C. Losa, Neutral–current interactions of low-energy neutrinos in dense neutron matter. Phys. Rev. C 89, 025804 (2014)

    Article  ADS  Google Scholar 

  17. O. Benhar, A. Polls, M. Valli, I. Vidaña, Microscopic calculations of transport properties of neutron matter. Phys. Rev. C 81, 024305 (2010)

    Article  ADS  Google Scholar 

  18. O. Benhar, N. Farina, Correlation effects on the weak response of nuclear matter. Phys. Lett. B 680, 305 (2009)

    Article  ADS  Google Scholar 

  19. O. Benhar, A. Cipollone, A. Loreti, Weak response of neutron matter at low momentum transfer. Phys. Rev. C 87, 014601 (2013)

    Article  ADS  Google Scholar 

  20. A. Mecca, A. Lovato, O. Benhar, A. Polls, Effective-interaction approach to the Fermi hard-sphere system. Phys. Rev. C 91, 034325 (2015)

    Article  ADS  Google Scholar 

  21. A. Mecca, A. Lovato, O. Benhar, A. Polls, Transport properties of the Fermi hard-sphere system. Phys. Rev. C 93, 035802 (2016)

    Article  ADS  Google Scholar 

  22. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980)

    Book  Google Scholar 

  23. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover Publications, New York, 2012)

    Google Scholar 

  24. H.F. Zhang, U. Lombardo, W. Zuo, Transport parameters in neutron stars from in-medium \(NN\) cross sections. Phys. Rev. C 82, 015805 (2010)

    Article  ADS  Google Scholar 

  25. E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969)

    Google Scholar 

  26. V.R. Pandharipande, R.B. Wiringa, Variations on a theme of nuclear matter. Rev. Mod. Phys. 51, 821 (1979)

    Article  ADS  Google Scholar 

  27. J.W. Clark, Variational theory of nuclear matter. Prog. Part. Nucl. Phys. 2, 89 (1979)

    Article  ADS  Google Scholar 

  28. A. Fabrocini, S. Fantoni, in First International Course of Condensed Matter Physics, ed. by D. Prosperi, S. Rosati, G. Violini (World Scientific, Singapore, 1986)

    Google Scholar 

  29. S. Fantoni, S. Rosati, Jastrow correlations and an irreducible cluster expansion for infinite boson or fermion systems. Il Nuovo Cimento A 20, 179 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  30. E. Krotscheck, Fermi-hypernetted chain theory for liquid 3He: a reassessment. J. Low Temp. Phys. 119, 103 (2000)

    Article  ADS  Google Scholar 

  31. S. Fantoni, V.R. Pandharipande, Orthogonalization of correlated states. Phys. Rev. C 37, 1697 (1988)

    Article  ADS  Google Scholar 

  32. S. Cowell, V.R. Pandharipande, Neutrino mean free paths in cold symmetric nuclear matter. Phys. Rev. C 70, 035801 (2004)

    Article  ADS  Google Scholar 

  33. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Accurate nucleon–nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  34. B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa, Quantum Monte Carlo calculations of nuclei with \(A <\sim 7\). Phys. Rev. C 56, 1720 (1997)

    Article  ADS  Google Scholar 

  35. I.E. Lagaris, V.R. Pandharipande, Variational calculations of realistic models of nuclear matter. Nucl. Phys. A 359, 349 (1981)

    Article  ADS  Google Scholar 

  36. R.B. Wiringa, S.C. Pieper, Evolution of nuclear spectra with nuclear forces. Phys. Rev. Lett. 89, 182501 (2002)

    Article  ADS  Google Scholar 

  37. B.S. Pudliner, V.R. Pandharipande, J. Carlson, R.B. Wiringa, Quantum Monte Carlo calculations of \(A \le 6\) nuclei. Phys. Rev. Lett. 74, 4396 (1995)

    Article  ADS  Google Scholar 

  38. J.-I. Fujita, H. Miyazawa, Pion theory of three-body forces. Prog. Theor. Phys. 17, 360 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. K.E. Schmidt, S. Fantoni, A quantum Monte Carlo method for nucleon systems. Phys. Lett. B 446, 99 (1999)

    Article  ADS  Google Scholar 

  40. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. E. Krotscheck, J.W. Clark, Studies in the method of correlated basis functions: (III). Pair condensation in strongly interacting Fermi systems. Nucl. Phys. A 333, 77 (1980)

    Article  ADS  Google Scholar 

  42. V.A. Khodel, V.V. Khodel, J.W. Clark, Solution of the gap equation in neutron matter. Nucl. Phys. A 598, 390 (1996)

    Article  ADS  MATH  Google Scholar 

  43. D.R. Tilley, J. Tilley, Superfluidity and Superconductivity (CRC Press, Boca Raton, 1990)

    MATH  Google Scholar 

  44. J.M.C. Chen, J.W. Clark, R.D. Davé, V.V. Khodel, Pairing gaps in nucleonic superfluids. Nucl. Phys. A 555, 59 (1993)

    Article  ADS  Google Scholar 

  45. J. Rikovska Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, M.R. Strayer, Nuclear matter and neutron-star properties calculated with the Skyrme interaction. Phys. Rev. C 68, 034324 (2003)

    Article  ADS  Google Scholar 

  46. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627, 710 (1997)

    Article  ADS  Google Scholar 

  47. N. Chamel, P. Haensel, Physics of neutron star crusts. Living Rev. Relativ. 11, 10 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Italian National Institute for Nuclear Research (INFN) Under Grant MANYBODY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Benhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhar, O., De Rosi, G. Superfluid Gap in Neutron Matter from a Microscopic Effective Interaction. J Low Temp Phys 189, 250–261 (2017). https://doi.org/10.1007/s10909-017-1823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1823-x

Keywords

Navigation