Skip to main content
Log in

Parallel Critical Field in Thin Niobium Films: Comparison to Theory

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

For the first time, a comparison to the predicted behavior for parallel critical field is carried out for the model of Kogan and the model of Hara and Nagai. In this study, thin niobium films in the moderately dirty regime were considered. Experimental values of the \(-C_{2}\) term are seen to be lower than those from the model of Hara and Nagai. A possible reason for this could be not including the non-spherical Fermi surface of niobium into the model. There is clearly disagreement with the model of Kogan as the films get cleaner and thinner, and two films which should be below his critical thickness still show positive values of \(-C_{2}\), in disagreement with his theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Jeffrey Garnder et al., Nat. Phys. 7, 895 (2011)

    Article  Google Scholar 

  2. D. Lenk et al., Phys. Rev. B 93, 184501 (2016)

    Article  ADS  Google Scholar 

  3. V.G. Kogan, Phys. Rev. B 34, 3499 (1986)

    Article  ADS  Google Scholar 

  4. V.G. Kogan, N. Kakagawa, Phys. Rev. B 35, 1700 (1987)

    Article  ADS  Google Scholar 

  5. P. Scotto, W. Pesch, J. Low Temp. Phys. 84, 301 (1991)

    Article  ADS  Google Scholar 

  6. J. Hara, K. Nagai, J. Phys. Soc. Jpn. 63, 2331 (1994)

    Article  ADS  Google Scholar 

  7. M. Tinkham, Phys. Rev. 129, 2413 (1963)

    Article  ADS  Google Scholar 

  8. T.P. Orlando, E.J. McNiff Jr., S. Foner, M.R. Beasley, Phys. Rev. B 19, 4545 (1979)

    Article  ADS  Google Scholar 

  9. http://www.inrf.uci.edu/wordpress/wp-content/uploads/sop-wet-silicon-rca-1.pdf

  10. L.J. van der Pauw, Phillips Res. Rep. 13, 1 (1958)

    Google Scholar 

  11. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    MATH  Google Scholar 

  12. H.R. Kerchner, D.K. Christen, S.T. Sekula, Phys. Rev. B 24, 1200 (1981)

    Article  ADS  Google Scholar 

  13. X. Zhao, L. Phillips, C.E. Reece, K. Seo, M. Krishnan, E. Vaderrama, J. Appl. Phys. 110, 033523 (2011)

    Article  ADS  Google Scholar 

  14. J.H. Claassen, S.A. Wolf, S.B. Qadri, L.D. Jones, J. Cryst. Growth 81, 557 (1987)

    Article  ADS  Google Scholar 

  15. P.C. Hohenberg, N.R. Werthamer, Phys. Rev. 153, 483 (1967)

    Article  ADS  Google Scholar 

  16. https://sourceforge.net/projects/linefit/

Download references

Acknowledgements

The author would like to gratefully acknowledge the assistance of A. Hunziker and A. Davis in the film production and measurement, the support of Covenant College for this work, and Prof. C. B. Eom for the X-ray analysis. This work was performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-1542174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Broussard.

Appendix

Appendix

Niobium samples used in this study

Sample

Substrate

d (nm)

RRR

\(\rho _{\mathrm {10K}}\ (\mathrm {n}\Omega \mathrm {m}) \)

\(T_\mathrm{c0}\) (K)

\(D=d/\xi \)

\(\lambda _{\mathrm {tr}} \)

\(-C_{2} (\mathrm {Exp.}) \)

\(-C_{2} (\mathrm {HN}) \)

\(-C_{2} (\mathrm {Kogan}) \)

A

(100) Si

48

4.04

49

8.946

1.3

4.4

0.064

0.071

0.066

B

(100) Si

23

2.68

89

7.777

0.54

10

0.0052(3)

0.0065

0.0054

C

(100) Si

48

2.68

89

8.262

1.2

9.5

0.027(1)

0.036

0.035

D

(100) Si

25

2.51

\(1.0{\times }10^{2} \)

8.426

0.63

10

0.0072(2)

0.0087

0.0079

E

A plane Sap

25

4.82

39

8.284

0.63

4.2

0.014

0.017

0.0072

F

C plane Sap

52

3.77

54

8.649

1.4

5.5

0.056

0.074

0.066

G

(100) Si

25

3.13

70

8.504

0.65

7.3

0.011

0.012

0.010

H

A plane Sap

22

7.24

24

8.644

0.57

2.4

0.014

0.017

\(-\)0.017

J

C plane Sap

25

4.07

49

8.477

0.64

5.0

0.012

0.015

0.0094

K

C plane Sap

16

2.53

98

7.615

0.37

11

0.0021

0.0027

0.0019

L

A plane Sap

16

4.12

48

8.021

0.39

5.3

0.0043

0.0049

\(-\)0.0072

M

C plane Sap

26

2.63

92

8.264

0.64

9.8

0.0077

0.0092

0.0084

N

(100) Si

24

3.01

75

8.600

0.63

7.6

0.0093(1)

0.011

0.0090

P

C plane Sap

20

2.68

89

8.050

0.49

9.7

0.0045

0.0053

0.0043

R

C plane Sap

20

2.59

94

8.060

0.50

10

0.0051(3)

0.0055

0.0044

S

C plane Sap

39

3.27

66

8.520

1.0

6.8

0.024

0.032

0.029

  1. All samples except B and C were grown at elevated temperatures, while B and C were grown at room temperature. Here d is the sample thickness, Si and Sap denote silicon and sapphire substrates, respectively, and RRR is the residual resistivity ratio between 290 and 10 K. Note that uncertainties for \(T_\mathrm{c0}\) are 3 mK, the uncertainties for \(-C_{2}\) experimental are given with the values and for all other values uncertainties are as stated in the text. The last two columns are the theoretical values for \(-C_{2}\) for the model of Hara and Nagai (HN) and Kogan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broussard, P.R. Parallel Critical Field in Thin Niobium Films: Comparison to Theory. J Low Temp Phys 189, 108–119 (2017). https://doi.org/10.1007/s10909-017-1792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1792-0

Keywords

Navigation