Skip to main content
Log in

Collapse of Vapor-Filled Bubbles in Liquid Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Multielectron bubbles (MEBs) are charged cavities in liquid helium which provide an interesting platform for the study of electrons on curved surfaces. Very recently, we have reported an experiment to trap these objects in a two-dimensional Paul trap, where they could be observed from ten to hundreds of milliseconds. During this time, the vapor inside the bubble condensed which resulted in a steady reduction in their size such that beyond a certain time the MEBs could no longer be detected. In this paper, we present experimental data on the lifetime of the bubbles as a function of their initial radius and compare the results with a theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.Y. Andrei, Two-Dimensional Electron Systems: On Helium and Other Cryogenic Substrates (Kluwer Academic Publishers, 1997)

  2. P. Leiderer, J. Low Temp. Phys. 87, 247 (1992)

    Article  ADS  Google Scholar 

  3. Y. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer Science & Business Media, 2004)

  4. A.P. Volodin, M.S. Khaikin, V.S. Edelman, Jetp Lett. 26, 543 (1977)

    ADS  Google Scholar 

  5. U. Albrecht, P. Leiderer, Europhys. Lett. 3, 705 (1987)

    Article  ADS  Google Scholar 

  6. J. Tempere, I.F. Silvera, J.T. Devreese, Surf. Sci. Rep. 62, 159 (2007)

    Article  ADS  Google Scholar 

  7. J. Fang, A.E. Dementyev, J. Tempere, I.F. Silvera, Rev. Sci. Instrum. 80, 43901 (2009)

    Article  Google Scholar 

  8. J. Fang, A.E. Dementyev, J. Tempere, I.F. Silvera, Rev. Sci. Instrum. 82, 33904 (2011)

    Article  Google Scholar 

  9. W. Guo, D.F. Jin, H.J. Maris, Phys. Rev. B 78, 014511 (2008)

    Article  ADS  Google Scholar 

  10. S.T. Hannahs, G.A. Williams, M.M. Salomaa, in Proceedings of the 1995 IEEE Ultrasonics Symposium vol. 1, no 2 1995, p. 635

  11. M.M. Salomaa, G.A. Williams, Phys. Rev. Lett. 47, 1730 (1981)

    Article  ADS  Google Scholar 

  12. J. Tempere, I.F. Silvera, J.T. Devreese, Phys. Rev. B 67, 035402 (2003)

    Article  ADS  Google Scholar 

  13. J. Tempere, I.F. Silvera, J.T. Devreese, Phys. Rev. Lett. 87, 275301 (2001)

    Article  ADS  Google Scholar 

  14. V. Vadakkumbatt, E. Joseph, A. Pal, A. Ghosh, Nat. Commun. 5, 4571 (2014). doi:10.1038/ncomms5571

    Article  ADS  Google Scholar 

  15. V. Vadakkumbatt, E.M. Joseph, A. Pal, A. Ghosh, J. Low Temp. Phys. 171, 239 (2013)

    Article  ADS  Google Scholar 

  16. E.M. Joseph, V. Vadakkumbatt, A. Pal, A. Ghosh, J. Low Temp. Phys. 175, 78 (2014)

    Article  ADS  Google Scholar 

  17. L.W. Florschuetz, B.T. Chao, J. Heat Transf. 87, 209 (1965)

    Article  Google Scholar 

  18. L. Rayleigh, Philos. Mag. 34, 94 (1917)

    Article  Google Scholar 

  19. M.S. Plesset, J. Appl. Mech. 16, 277 (1949)

    Google Scholar 

  20. J.S. Brooks, R.J. Donnelly, J. Phys. Chem. Ref. Data 6, 51 (1977)

    Article  ADS  Google Scholar 

  21. J. Crank, The Mathematics of Diffusion, 2nd edn. (Clarendon Press, 1979)

  22. K. Fokkens, W. Vermeer, K.W. Taconis, R.D.B. Ouboter, Physica 30, 2153 (1964)

    Article  ADS  Google Scholar 

  23. E.M. Joseph, V. Vadakkumbatt, A. Pal, A. Ghosh, J. Low Temp. Phys. (2016). doi:10.1007/s10909-016-1702-x

    Google Scholar 

  24. R. Mei, J.F. Klausner, C.J. Lawrence, Phys. Fluids 6, 418 (1994)

    Article  ADS  Google Scholar 

  25. V. Vadakkumbatt, A. Ghosh, J. Low Temp. Phys. (2016). doi:10.1007/s10909-016-1682-x

    Google Scholar 

  26. D.D. Wittke, B.T. Chao, J. Heat Transf. 89, 17 (1967)

    Article  Google Scholar 

  27. Y. Hao, A. Prosperetti, Int. J. Heat Mass Transf. 43, 3539 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from Nanomission, DST and the International Travel Grant Award Program from APS, USA. This work was partially supported by the US National Science Foundation through Grant No. GR5260053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anustuv Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Joseph, E., Vadakkumbatt, V. et al. Collapse of Vapor-Filled Bubbles in Liquid Helium. J Low Temp Phys 188, 101–111 (2017). https://doi.org/10.1007/s10909-017-1782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1782-2

Keywords

Navigation