Skip to main content
Log in

Optical and Electron Spin Resonance Studies of Destruction of Porous Structures Formed by Nitrogen–Rare Gas Nanoclusters in Bulk Superfluid Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We studied optical and electron spin resonance spectra during destruction of porous structures formed by nitrogen–rare gas (RG) nanoclusters in bulk superfluid helium containing high concentrations of stabilized nitrogen atoms. Samples were created by injecting products of a radio frequency discharge of nitrogen–rare gas–helium gas mixtures into bulk superfluid helium. These samples have a high energy density allowing the study of energy release in chemical processes inside of nanocluster aggregates. The rare gases used in the studies were neon, argon, and krypton. We also studied the effects of changing the relative concentrations between nitrogen and rare gas on thermoluminescence spectra during destruction of the samples. At the beginning of the destructions, \(\alpha \)-group of nitrogen atoms, Vegard–Kaplan bands of \(\hbox {N}_2\) molecules, and \(\beta \)-group of O atoms were observed. The final destruction of the samples were characterized by a series bright flashes. Spectra obtained during these flashes contain M- and \(\beta \)-bands of NO molecules, the intensities of which depend on the concentration of molecular nitrogen in the gas mixture as well as the type of rare gas present in the gas mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Vegard, Nature 113, 716–717 (1924)

    Article  ADS  Google Scholar 

  2. L. Vegard, Nature 114, 357–359 (1924)

    Article  ADS  Google Scholar 

  3. A.M. Bass, H.P. Broida, Phys. Rev. 101, 1740–1747 (1956)

    Article  ADS  Google Scholar 

  4. M.J. Peyron, H.P. Broida, J. Chem. Phys. 30, 139–150 (1959)

    Article  ADS  Google Scholar 

  5. H.P. Broida, M.J. Peyron, J. Chem. Phys. 32, 1068–1071 (1960)

    Article  ADS  Google Scholar 

  6. A.M. Bass, H.P. Broida, Formation and Trapping of Free Radicals (Academic, New York, 1960)

    Google Scholar 

  7. E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, A. Ponomaryov, V. Bondybey, Phys. Status Solidi C 12, 49–54 (2014)

    Article  Google Scholar 

  8. E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, M.K. Beyer, A. Ponomaryov, V. Bondybey, J. Phys. Chem. A 119, 2475–2482 (2015)

    Article  Google Scholar 

  9. R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, D.Yu. Stolyarov, V.V. Khmelenko, Chem. Phys. Lett. 305, 217–224 (1999)

  10. I.N. Krushinskaya, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, J. Phys. Conf. Ser. 400, 012030-4 (2012)

    Article  Google Scholar 

  11. V.V. Khmelenko, I.N. Krushinskaya, R.E. Boltnev, I.B. Bykhalo, A.A. Pelmenev, D.M. Lee, Low Temp. Phys. 38, 688–699 (2012)

    Article  ADS  Google Scholar 

  12. V.V. Khmelenko, A.A. Pelmenev, I.N. Krushinskaya, I.B. Bykhalo, R.E. Boltnev, D.M. Lee, J. Low Temp. Phys. 171, 302–308 (2013)

    Article  ADS  Google Scholar 

  13. R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev, V.V. Khmelenko, S. Mao, A. Meraki, S.C. Wilde, P.T. McColgan, D.M. Lee, J. Phys. Chem. A 119, 2438–2448 (2015)

    Article  Google Scholar 

  14. E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, JETP Lett. 19, 63–65 (1974)

    ADS  Google Scholar 

  15. E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, V.V. Khmelenko, Cryogenics 16(9), 555–557 (1976)

    Article  ADS  Google Scholar 

  16. V. Kiryukhin, B. Keimer, R.E. Boltnev, V.V. Khmelenko, E.B. Gordon, Phys. Rev. Lett. 79, 1774–1777 (1997)

    Article  ADS  Google Scholar 

  17. S.I. Kiselev, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, R.E. Boltnev, E.B. Gordon, B. Keimer, Phys. Rev. B 65, 024517–12 (2002)

    Article  ADS  Google Scholar 

  18. V. Kiryukhin, E.B. Bernard, V.V. Khmelenko, R.E. Boltnev, N.V. Krainyukova, D.M. Lee, Phys. Rev. Lett. 98, 195506–4 (2007)

    Article  ADS  Google Scholar 

  19. S.I. Kiselev, V.V. Khmelenko, D.M. Lee, Low Temp. Phys. 26, 641–648 (2000)

    Article  ADS  Google Scholar 

  20. S.I. Kiselev, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 121, 671–676 (2000)

    Article  ADS  Google Scholar 

  21. E.B. Gordon, V.V. Khmelenko, E.A. Popov, A.A. Pelmenev, O.F. Pugachev, Chem. Phys. Lett. 155, 301–304 (1989)

    Article  ADS  Google Scholar 

  22. E.P. Bernard, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 134, 199–204 (2004)

    Article  ADS  Google Scholar 

  23. S. Mao, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, Low Temp. Phys. 38, 1037–1042 (2012)

    Article  ADS  Google Scholar 

  24. R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, E.A. Popov, D.Yu. Stolyarov, V.V. Khmelenko, Low Temp. Phys. 31, 547–555 (2005)

  25. A. Meraki, S. Mao, P.T. McColgan, R.E. Boltnev, D.M. Lee, V.V. Khmelenko, J. Low Temp. Phys. 185, 269–286 (2016)

    Article  ADS  Google Scholar 

  26. S. Mao, A. Meraki, P.T. McColgan, V. Shemelin, V.V. Khmelenko, D.M. Lee, Rev. Sci. Instrum. 85, 073906–11 (2014)

    Article  ADS  Google Scholar 

  27. R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev, S. Mao, A. Meraki, P.T. McColgan, D.M. Lee, V.V. Khmelenko, Phys. Chem. Chem. Phys. 18, 16013–16020 (2016)

    Article  Google Scholar 

  28. M. Chergui, R. Schriever, N. Schwentner, J. Chem. Phys. 89, 7083–7093 (1988)

    Article  ADS  Google Scholar 

  29. R.P. Frosch, G.W. Robinson, J. Chem. Phys. 41, 367–374 (1964)

    Article  ADS  Google Scholar 

  30. I.Y. Fugol, Y.B. Poltoratski, Solid State Commun. 30, 497–500 (1979)

    Article  ADS  Google Scholar 

  31. R.E. Boltnev, E.P. Bernard, J. Jarvinen, V.V. Khmelenko, D.M. Lee, Phys. Rev. B 79, 180506(R)–4 (2009)

    Article  ADS  Google Scholar 

  32. R.E. Boltnev, V.V. Khmelenko, D.M. Lee, Low Temp. Phys. 36, 382–391 (2010)

    Article  ADS  Google Scholar 

  33. J. Fournier, J. Deson, C. Vermeil, J. Chem. Phys. 68, 5062–5065 (1978)

    Article  ADS  Google Scholar 

  34. J. Eloranta, K. Vaskonen, H. Hakkanen, T. Kiljunen, H. Kunttu, J. Chem. Phys. 109, 7784–7792 (1998)

    Article  ADS  Google Scholar 

  35. M. Chergui, N. Schwentner, A. Tramer, Chem. Phys. Lett. 201, 187–193 (1993)

    Article  ADS  Google Scholar 

  36. W.C. Walker, R.V. Taylor, K.M. Monahan, Chem. Phys. Lett. 84, 288–289 (1981)

    Article  ADS  Google Scholar 

  37. R.V. Taylor, W.C. Walker, J. Chem. Phys. 70, 284–287 (1979)

    Article  ADS  Google Scholar 

  38. R.V. Taylor, W. Scott, P.R. Findley, Z. Wu, W.C. Walker, K.M. Monahan, J. Chem. Phys. 74, 3718–3722 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from NSF Grant No. DMR 1209255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. McColgan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McColgan, P.T., Meraki, A., Boltnev, R.E. et al. Optical and Electron Spin Resonance Studies of Destruction of Porous Structures Formed by Nitrogen–Rare Gas Nanoclusters in Bulk Superfluid Helium. J Low Temp Phys 187, 124–139 (2017). https://doi.org/10.1007/s10909-016-1707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1707-5

Keywords

Navigation