Skip to main content

Advertisement

Log in

A Note on the Propagation of Quantized Vortex Rings Through a Quantum Turbulence Tangle: Energy Transport or Energy Dissipation?

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high-resolution numerical simulations, we examine the validity of simple estimates for the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately \(75\,\%\) of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.B. Rogers, On the Formation of Rotating Rings by Air and Liquids under Certain Conditions of Discharge (E. Hayes, Invercargill, 1858)

    Google Scholar 

  2. K. Shariff, A. Leonard, Annu. Rev. Fluid Mech. 24(1), 235 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Kleckner, W.T.M. Irvine, Nat. Phys. 9(4), 253 (2013)

    Article  Google Scholar 

  4. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  5. C.F. Barenghi, L. Skrbek, K.R. Sreenivasan, PNAS 111(Supplement\_1), 4647 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 95(3), 035302 (2005)

    Article  ADS  Google Scholar 

  7. P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 100(24), 245301 (2008)

    Article  ADS  Google Scholar 

  8. L. Kondaurova, S.K. Nemirovskii, Phys. Rev. B 86(13), 134506 (2012)

    Article  ADS  Google Scholar 

  9. S.K. Nemirovskii, Low Temp. Phys. 39(10), 812 (2013)

    Article  ADS  Google Scholar 

  10. B.V. Svistunov, Phys. Rev. B 52(5), 3647 (1995)

    Article  ADS  Google Scholar 

  11. R.M. Kerr, Phys. Rev. Lett. 106(22), 224501 (2011)

    Article  ADS  Google Scholar 

  12. M. Kursa, K. Bajer, T. Lipniacki, Phys. Rev. B 83(1), 014515 (2011)

    Article  ADS  Google Scholar 

  13. E. Kozik, B. Svistunov, Phys. Rev. Lett. 92(3), 035301 (2004)

    Article  ADS  Google Scholar 

  14. V.S. L‘vov, S. Nazarenko, Low Temp. Phys. 36(8), 785 (2010)

  15. A.W. Baggaley, J. Laurie, Phys. Rev. B 89(1), 014504 (2014)

    Article  ADS  Google Scholar 

  16. A.W. Baggaley, L.K. Sherwin, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 86(10), 104501 (2012)

    Article  ADS  Google Scholar 

  17. E. Kozik, B. Svistunov, Phys. Rev. B 77(6), 060502 (2008)

    Article  ADS  Google Scholar 

  18. A.W. Baggaley, Phys. Fluids 24(5), 055109 (2012)

    Article  ADS  Google Scholar 

  19. V.S. L‘vov, S.V. Nazarenko, O. Rudenko, Phys. Rev. B 76(2), 024520 (2007)

  20. E.V. Kozik, B.V. Svistunov, J. Low Temp. Phys. 156(3–6), 215 (2009)

    Article  ADS  Google Scholar 

  21. P.M. Walmsley, P.A. Tompsett, D.E. Zmeev, A.I. Golov, Phys. Rev. Lett. 113(12), 125302 (2014)

    Article  ADS  Google Scholar 

  22. H. Salman, Phys. Rev. Lett. 111(16), 165301 (2013)

    Article  ADS  Google Scholar 

  23. K.W. Schwarz, Phys. Rev. B 31(9), 5782 (1985)

    Article  ADS  Google Scholar 

  24. A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 83(13), 134509 (2011)

    Article  ADS  Google Scholar 

  25. A.W. Baggaley, J. Low Temp. Phys. 168(1–2), 18 (2012)

    Article  ADS  Google Scholar 

  26. K.W. Schwarz, Phys. Rev. B 38(4), 2398 (1988)

    Article  ADS  Google Scholar 

  27. L.P. Kondaurova, V.A. Andryuschenko, S.K. Nemirovskii, J. Low Temp. Phys. 150(3–4), 415 (2008)

    Article  ADS  Google Scholar 

  28. H. Adachi, M. Tsubota, Phys. Rev. B 83(13), 132503 (2011)

    Article  ADS  Google Scholar 

  29. Laurie J, Baggaley A.W (2015) J. Low Temp. Phys. 1–13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Baggaley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurie, J., Baggaley, A.W. A Note on the Propagation of Quantized Vortex Rings Through a Quantum Turbulence Tangle: Energy Transport or Energy Dissipation?. J Low Temp Phys 180, 95–108 (2015). https://doi.org/10.1007/s10909-015-1287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1287-9

Keywords

Navigation