Skip to main content
Log in

The Effects of Electric Field on a Triangular Bound Potential Quantum Dot Qubit

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

On the condition of electron-LO-phonon strong coupling in a triangular bound potential quantum dot, we obtain the eigenenergy and eigenfuctions of the ground state and the first-excited state by using the Pekar type of variational method. This two-level system in a quantum dot can be employed as a qubit, which is a basic unit for quantum information operation and storage. Our numerical results indicate that the oscillation period of this qubit is an increasing function of the confinement length and the electric field. The influence of electric field on the period of oscillation becomes greater when the confinement length is increased. The electron probability density of the qubit is an increasing function of the electron-LO-phonon coupling constant. On the contrary, it is a decreasing function of the electric field. Meanwhile, the electron probability density varies periodically with the polar angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.H. Bennett, D.P. DiVincenzo, Nat. (Lond.) 404, 247 (2000)

    Article  ADS  Google Scholar 

  2. C. Sikorski, U. Merkt, Phys. Rev. Lett. 62, 2164 (1989)

    Article  ADS  Google Scholar 

  3. G.P. Berman, G.D. Doolen, V.I. Tsifrinovich, Superlattices Microstruct. 27, 2 (2000)

    Article  Google Scholar 

  4. P. Zoller, Th Beth et al., Eur. Phys. J. D. 36, 203 (2005)

    Article  ADS  Google Scholar 

  5. A. Lorke, J.P. Kotthaus, K. Ploog, Phys. Rev. Lett. 64, 2559 (1990)

    Article  ADS  Google Scholar 

  6. S. Normura, T. Kobayashi, Phys. Rev. B 45, 1305 (1992)

    Article  ADS  Google Scholar 

  7. S.S. Li, J.B. Xia, J. Appl. Phys. 100, 083714 (2006)

    Article  ADS  Google Scholar 

  8. S.S. Li, J.B. Xia, Chin. Phys. 16, 0001 (2007)

    Article  ADS  Google Scholar 

  9. F. Chi, S.S. Li, J. Appl. Phys. 99, 043705 (2006)

    Article  ADS  Google Scholar 

  10. J.K. Sun, H.J. Li, J.L. Xiao, Superlattices Microstruct. 46, 476 (2009)

    Article  ADS  Google Scholar 

  11. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  12. N.A. Gershenfeld, L.L. Chuang, Science. 275, 350 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. B.E. Kane, Nat. (Lond.) 393, 133 (1998)

    Article  ADS  Google Scholar 

  14. D. Loss, D.P. DiVincenzo, Phys. Rev. A. 57, 120 (1998)

    Article  ADS  Google Scholar 

  15. Q.A. Turchette, C.J. Hood, W. Lange et al., Phys. Rev. Lett. 75, 4710 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.V. Averin, Solid State Commun. 105, 659 (1998)

    Article  ADS  Google Scholar 

  17. Y. Makhlin, G. Schon, A. Shnirman, Nat. (Lond.) 398, 305 (1999)

    Article  ADS  Google Scholar 

  18. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000)

    Article  ADS  Google Scholar 

  19. J. Tersoff, C. Teichert, M.G. Lagally, Phys. Rev. Lett. 76, 1675 (1996)

    Article  ADS  Google Scholar 

  20. W.P. Li, J.W. Yin, Y.F. Yu et al., J. Low. Temp. Phys. 160, 112 (2010)

    Article  ADS  Google Scholar 

  21. S.S. Li, J.B. Xia, F.H. Yang et al., J. Appl. Phys. 90, 6151 (2001)

    Article  ADS  Google Scholar 

  22. S.S. Li, F.S. Bai, S.L. Feng et al., Proc. Natl. Acad. Sci. USA 98, 11847 (2001)

    Article  ADS  Google Scholar 

  23. Z.W. Wang, J.L. Xiao, Phys. Sin. 56, 678 (2007)

    Google Scholar 

  24. S.H. Xiang, K.H. Song et al., Phys. Sin. 55, 529 (2006). (in chinese)

    Google Scholar 

  25. M.H. Rubin, D.N. Klyshko, Y.H. Shih, et al. 50(1994) 5122.

  26. S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)

    Article  ADS  Google Scholar 

  27. D. Tolkunov, V. Privman, Phys. Rev. A. 69, 062309 (2004)

    Article  ADS  Google Scholar 

  28. Z.W. Wang, J.L. Xiao, W.P. Li, Phys. B 403, 522 (2008)

    Article  ADS  Google Scholar 

  29. Y.F. Liu, J.L. Xiao, Phys. B 403, 3013 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 11264001) and the Research Science Project for the Natural Science Foundation of Inner Mongolia (No. 2012MS0116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-juan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Jw., Yu, Yf. & Li, Hj. The Effects of Electric Field on a Triangular Bound Potential Quantum Dot Qubit. J Low Temp Phys 177, 72–79 (2014). https://doi.org/10.1007/s10909-014-1181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1181-x

Keywords

Mathematics Subject Classification

Navigation