Skip to main content
Log in

Microkelvin Thermometry with Bose–Einstein Condensates of Magnons and Applications to Studies of the AB Interface in Superfluid \(^3\)He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Coherent precession of trapped Bose–Einstein condensates of magnons is a sensitive probe for magnetic relaxation processes in superfluid \(^3\)He-B down to the lowest achievable temperatures. We use the dependence of the relaxation rate on the density of thermal quasiparticles to implement thermometry in \(^3\)He-B at temperatures below \(300\,\upmu \)K. Unlike popular vibrating wire or quartz tuning fork based thermometers, magnon condensates allow for contactless temperature measurement and make possible an independent in situ determination of the residual zero-temperature relaxation provided by the radiation damping. We use this magnon-condensate-based thermometry to study the thermal impedance of the interface between A and B phases of superfluid \(^3\)He. The magnon condensate is also a sensitive probe of the orbital order-parameter texture. This has allowed us to observe for the first time the non-thermal signature of the annihilation of two AB interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.E. Volovik, The Universe in a Helium Droplet (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  2. S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  3. J.M. Lattimer, M. Prakash, Science 304, 536 (2004)

    Article  ADS  Google Scholar 

  4. J.M. Parpia, Phys. Rev. B 32, 7564 (1985)

    Article  ADS  Google Scholar 

  5. A.M. Guénault, V. Keith, C.J. Kennedy, S.G. Mussett, G.R. Pickett, J. Low Temp. Phys. 62, 511 (1986)

    Article  ADS  Google Scholar 

  6. R. Blaauwgeers, M. Blazkova, M. \({\hat{C}}\)love\({\hat{c}}\)ko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007)

  7. D.I. Bradley, P. Crookston, S.N. Fisher, A. Ganshin, A.M. Guénault, R.P. Haley, M.J. Jackson, G.R. Pickett, R. Schanen, V. Tsepelin, J. Low Temp. Phys. 157, 476 (2009)

    Article  ADS  Google Scholar 

  8. C. Bäuerle, Yu.M. Bunkov, S.N. Fisher, H. Godfrin, Phys. Rev. B 57, 14381 (1998)

    Google Scholar 

  9. I.A. Todoschenko, H. Alles, A. Babkin, A.Ya. Parshin, V. Tsepelin, J. Low Temp. Phys. 126, 1449 (2002)

    Google Scholar 

  10. A.I. Ahonen, M. Krusius, M.A. Paalanen, J. Low Temp. Phys. 25, 421 (1976)

    Article  ADS  Google Scholar 

  11. J.S. Korhonen, A.D. Gongadze, Z. Janú, Y. Kondo, M. Krusius, Yu.M. Mukharsky, E.V. Thuneberg, Phys. Rev. Lett. 65, 1211 (1990)

    Google Scholar 

  12. R. de Graaf, V.B. Eltsov, P.J. Heikkinen, J.J. Hosio, M. Krusius, J. Low Temp. Phys. 163, 238 (2011)

    Article  ADS  Google Scholar 

  13. Yu.M. Bunkov, G.E. Volovik, Phys. Rev. Lett. 98, 265302 (2007)

    Google Scholar 

  14. Yu.M. Bunkov, G.E. Volovik, in Novel Superfluids, vol. 1, ed. by K.H. Bennemann, J.B. Ketterson (Oxford University Press, Oxford, 2013), pp. 253–311. arXiv:1003.4889

  15. Yu.M. Bunkov, S.N. Fisher, A.M. Guénault, G.R. Pickett, Phys. Rev. Lett. 69, 3092 (1992)

    Google Scholar 

  16. D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, C.J. Matthews, G.R. Pickett, P. Skyba, J. Low Temp. Phys. 134, 351 (2004)

    Article  ADS  Google Scholar 

  17. S.N. Fisher, G.R. Pickett, P. Skyba, N. Suramlishvili, Phys. Rev. B 86, 024506 (2012)

    Article  ADS  Google Scholar 

  18. S. Autti, Yu.M. Bunkov, V.B. Eltsov, P.J. Heikkinen, J.J. Hosio, P. Hunger, M. Krusius, G.E. Volovik, Phys. Rev. Lett. 108, 145303 (2012)

    Google Scholar 

  19. P.J. Heikkinen, S. Autti, V.B. Eltsov, J.J. Hosio, M. Krusius, V.V. Zavjalov, J. Low Temp. Phys. 175, 3 (2014)

    Article  ADS  Google Scholar 

  20. D. Einzel, J. Low Temp. Phys. 84, 321 (1991)

    Article  ADS  Google Scholar 

  21. A.J. Leggett, M.J. Rice, Phys. Rev. Lett. 20, 586 (1968)

    Article  ADS  Google Scholar 

  22. A.J. Leggett, J. Phys. C 3, 448 (1970)

    Article  ADS  Google Scholar 

  23. Yu.M. Bunkov, V.V. Dmitriev, A.V. Markelov, Yu.M. Mukharskii, D. Einzel, Phys. Rev. Lett. 65, 867 (1990)

    Google Scholar 

  24. A.V. Markelov, Yu.M. Mukharsky, Physica B 178, 202 (1992)

    Google Scholar 

  25. N. Bloembergen, V. Pound, Phys. Rev. 95, 8 (1954)

    Article  ADS  Google Scholar 

  26. D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, J. Kopu, H. Martin, G.R. Pickett, J.E. Roberts, V. Tsepelin, J. Low Temp. Phys. 148, 465 (2007)

    Article  ADS  Google Scholar 

  27. D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, J. Kopu, H. Martin, G.R. Pickett, J.E. Roberts, V. Tsepelin, Nat. Phys. 4, 46 (2008)

    Article  Google Scholar 

  28. I. Hahn, Thermodynamic study of the A-B phase transition in superfluid \(^3\)He: Phase diagram and consequences. Doctoral dissertation, University of Southern California, Los Angeles, USA (1993)

  29. M. Kupka, P. Skyba, Phys. Lett. A 317, 324 (2003)

    Article  ADS  Google Scholar 

  30. K. Maki, P. Kumar, Phys. Rev. B 16, 4805 (1977)

    Article  ADS  Google Scholar 

  31. D. Rainer, J.W. Serene, Phys. Rev. B 13, 4745 (1976)

    Article  ADS  Google Scholar 

  32. J.J. Hosio, V.B. Eltsov, R. de Graaf, M. Krusius, J. Mäkinen, D. Schmoranzer, Phys. Rev. B 84, 224501 (2011)

    Article  ADS  Google Scholar 

  33. S.N. Fisher, A.M. Guénault, C.J. Kennedy, G.R. Pickett, Phys. Rev. Lett. 69, 1073 (1992)

    Article  ADS  Google Scholar 

  34. D.J. Cousins, S.N. Fisher, A.I. Gregory, G.R. Pickett, N.S. Shaw, Phys. Rev. Lett. 82, 4484 (1999)

    Article  ADS  Google Scholar 

  35. I.A. Fomin, JETP Lett. 30, 164 (1979)

    ADS  Google Scholar 

  36. D. Vollhard, P. Wöfle, The Superfluid Phases of Helium 3 (Taylor & Francis, London, 1990), p. 385

    Google Scholar 

  37. P.J. Hakonen, M. Krusius, M.M. Salomaa, R.H. Salmelin, J.T. Simola, J. Low Temp. Phys. 76, 225 (1989)

    Article  ADS  Google Scholar 

  38. E.V. Thuneberg, J. Low Temp. Phys. 122, 657 (2001)

    Article  ADS  Google Scholar 

  39. J. Kopu, J. Low Temp. Phys. 146, 47 (2007)

    Article  ADS  Google Scholar 

  40. S.N. Fisher, A.M. Guénault, R.P. Haley, G.R. Pickett, G.N. Plenderleith, P. Skyba, J. Low Temp. Phys. 113, 651 (1998)

    Article  ADS  Google Scholar 

  41. M. Bartkowiak, S.N. Fisher, A.M. Guénault, R.P. Haley, G.N. Plenderleith, G.R. Pickett, P. Skyba, Physica B 284, 240 (2000)

    Article  ADS  Google Scholar 

  42. S. Yip, A.J. Leggett, Phys. Rev. Lett. 57, 345 (1986)

    Article  ADS  Google Scholar 

  43. N.B. Kopnin, Zh. Eksp. Teor. Fiz. 92, 2106 (1987) [Sov. Phys. JETP 65, 1187 (1987)]

  44. M. Arrayás, S.N. Fisher, R.P. Haley, G.R. Pickett, M. Skyba, J. Low Temp. Phys., this issue

  45. M. Bartkowiak, S.N. Fisher, A.M. Guénault, R.P. Haley, G.R. Pickett, G.N. Plenderleith, P. Skyba, Phys. Rev. Lett. 85, 4321 (2000)

    Article  ADS  Google Scholar 

  46. H. Martin, Experiments on the thermal transport properties of superfluid \(^3\)He at ultra low temperatures. Doctoral dissertation, Lancaster University, Lancaster, UK (2006)

  47. L. Pogosian, S.-H. Tye, I. Wasserman, M. Wyman, Phys. Rev. D 68, 023506 (2003)

    Article  ADS  Google Scholar 

  48. V.B. Eltsov, R. Blaauwgeers, A.P. Finne, M. Krusius, J.J. Ruohio, G.E. Volovik, Physica B 329–332, 96 (2003)

    Article  Google Scholar 

  49. E.V. Thuneberg, Phys. Rev. B 44, 9685 (1991)

    Article  ADS  Google Scholar 

  50. Y. Mukharsky, O. Avenel, E. Varoquaux, Phys. Rev. Lett. 92, 210402 (2004)

    Article  ADS  Google Scholar 

  51. R.E. Solntsev, R. de Graaf, V.B. Eltsov, R. Hänninen, M. Krusius, J. Low Temp. Phys. 148, 311 (2007)

    Article  ADS  Google Scholar 

  52. V.B. Eltsov, R. de Graaf, M. Krusius, D.E. Zmeev, J. Low Temp. Phys. 162, 212 (2011)

    Article  ADS  Google Scholar 

  53. V.B. Eltsov, T.W.B. Kibble, M. Krusius, V.M.H. Ruutu, G.E. Volovik, Phys. Rev. Lett. 85, 4793 (2000)

    Article  Google Scholar 

  54. Yu.M. Bunkov, O.D. Timofeevskaya, Phys. Rev. Lett. 80, 4927 (1998)

    Google Scholar 

  55. Y. Kondo, J.S. Korhonen, M. Krusius, V.V. Dmitriev, E.V. Thuneberg, G.E. Volovik, Phys. Rev. Lett. 68, 3331 (1992)

    Article  ADS  Google Scholar 

  56. R. Blaauwgeers, V.B. Eltsov, G. Eska, A.P. Finne, R.P. Haley, M. Krusius, J.J. Ruohio, L. Skrbek, G.E. Volovik, Phys. Rev. Lett. 89, 155301 (2002)

    Article  ADS  Google Scholar 

  57. I.A. Fomin, Zh. Eksp. Teor. Fiz. 78, 2392 (1980) [Sov. Phys. JETP 51, 1203 (1980)]

Download references

Acknowledgments

We thank M. Krusius and P. Skyba for stimulating discussions. This work has been supported in part by the EU 7th Framework Programme (FP7/2007-2013, Grant No. 228464 Microkelvin) and by the Academy of Finland through its LTQ CoE grant (Project No. 250280). The research was done using facilities of the Cryohall infrastructure supported by Aalto University and Academy of Finland. P. J. Heikkinen acknowledges financial support from the Väisälä Foundation of the Finnish Academy of Science and Letters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Heikkinen.

Appendix: Calculation of the Spin Diffusion Coefficient

Appendix: Calculation of the Spin Diffusion Coefficient

The expression for the transverse spin diffusion tensor \(D^\perp _{ij}\) [20, 24] is rather complicated and its correct numerical evaluation provides some challenge. Here we describe one recipe for successful calculation of the spin diffusion and also provide a low-temperature approximation from which the origin of the exponential dependence of \(D\) on temperature becomes clear. We discuss only transverse spin diffusion and thus omit the superscript ‘\(\perp \)’ from the following equations.

The theoretical expression for \(D\) is

$$\begin{aligned} D_{ij}(T, \omega _\mathrm{L}) = \frac{v_\mathrm{F}^2}{\chi '}\ {\tau }^\prime \ \int \frac{{S_\perp ^{(-)}}^2- i({\tau }^\prime \omega ^\prime ){S_\parallel ^{(+)}}^2}{{1+({\tau }^\prime \omega ^\prime )^{2}}{S_\parallel ^{(+)}}^2}{k_{i}}{k_{j}} {\phi _{k}}{d\xi _{k}\frac{d\Omega _{k}}{4\pi }}. \end{aligned}$$
(9)

Here \(v_\mathrm{F}\) is the Fermi velocity, \(\chi '\) is the ratio of susceptibilities of superfluid helium and ideal Fermi gas \(\chi '=\chi _\mathrm{B}/\chi _\mathrm{N0}\), \(\mathbf {k}\) is the wave vector and \(\xi _k\) is the energy of the quasiparticles. The integration is performed over the energy and direction of the wave vector. We also make use of the following notation

$$\begin{aligned} \omega ^\prime = \omega _\mathrm{L}+\omega _\mathrm{m},\quad {\tau }^\prime = \frac{\tau }{1-i\omega _\mathrm{L}\tau },\\ {S_\parallel ^{(+)}}^2= u^2 + k_\parallel ^2(1-u^2),\quad {S_\perp ^{(-)}}^2= 1-\frac{k_\perp ^2}{2}(1-u^2),\\ u=\frac{\xi }{\sqrt{\xi ^2+\Delta ^2}}, \quad \phi _k = \frac{1}{2T}\left( \cosh \frac{\sqrt{\xi ^2+\Delta ^2}}{2T}\right) ^{-2},\\ k_\perp = \sqrt{k_x^2+k_y^2} = \sqrt{1-{k_\parallel }^2}, \quad k_\parallel = k_z, \end{aligned}$$

where \(\tau \) is the quasiparticle relaxation time and \(\omega _\mathrm{m}= \lambda \omega _\mathrm{L}\) is the Landau molecular field.

The integration over angles in Eq. (9) can be performed analytically, resulting in the following integrals over the energy which can be evaluated numerically,

$$\begin{aligned} D_{xx} = \frac{v_F^2}{\chi '}\ {\tau }^\prime \ \mathop \int \limits _{-\infty }^{\infty } \ \frac{1}{2} (I_1-I_2)\ \phi _k\ d\xi _k, \qquad D_{zz} = \frac{v_F^2}{\chi '}\ {\tau }^\prime \ \mathop \int \limits _{-\infty }^{\infty } \ I_2\ \phi _k\ d\xi _k. \end{aligned}$$
(10)

Here

$$\begin{aligned} I_1 = \mathop \int \limits _0^1 \frac{a{k_\parallel }^2 + b}{c {k_\parallel }^2 + d}\ d{k_\parallel }= \frac{a}{c} + \frac{a}{c}\left( \frac{b}{a} - \frac{d}{c}\right) \sqrt{\frac{c}{d}}\tan ^{-1}\sqrt{\frac{c}{d}},\\ I_2 = \mathop \int \limits _0^1 \frac{a{k_\parallel }^2 + b}{c {k_\parallel }^2 + d}\ {k_\parallel }^2\ d{k_\parallel }= \frac{a}{3c} + \frac{a}{c}\left( \frac{b}{a} - \frac{d}{c}\right) \left[ 1 - \sqrt{\frac{d}{c}}\tan ^{-1}\sqrt{\frac{c}{d}} \right] , \end{aligned}$$

and

$$\begin{aligned} a = \left( \frac{1}{2} - i({\tau }^\prime \omega ^\prime )\right) (1-u^2), \qquad b = \frac{1}{2} (1+u^2) - i({\tau }^\prime \omega ^\prime ) u^2,\\ c = ({\tau }^\prime \omega ^\prime )^2 (1-u^2),\qquad d = 1 + ({\tau }^\prime \omega ^\prime )^2 u^2. \end{aligned}$$

The real part of the expressions in Eq. (10) should be taken as respective components of the diffusion tensor. For numerical stability purposes we perform the integration in Eq. (10) with the same precautions required for calculations of Yosida functions. Namely, to avoid problems at \(T \rightarrow 0\) and \(\xi _k \rightarrow 0\), we substitute the variable \(\xi ' = \tanh (2\xi _k/7)\). If one is interested in the hydrodynamic limit \(\omega _\mathrm{L}\tau \ll 1\), then for \(I_1\) and \(I_2\) more numerically stable approximations are \(I_1 = a/3+b\) and \(I_2 = a/5+b/3\).

Here we are interested in low temperatures, where \(\omega _\mathrm{L}\tau \gg 1\). At these temperatures the values \(|u| \ll 1\) are important in the integrals in Eq. (10). Thus in order to find a low-temperature approximation of \(D\) we expand the integrands in Eq. (10) in powers of \(u\), using the definition of Yosida functions

$$\begin{aligned} Y_n(T) = \mathop \int \limits _{-\infty }^{\infty } u^n \phi _k\ d\xi _k \end{aligned}$$

to perform the integration, and take the limit \(\omega _\mathrm{L}\tau \rightarrow +\infty \). The resulting expressions, with expansion up to \(u^4\), are

$$\begin{aligned} D_{xx}&= \frac{v_F^2}{\omega _\mathrm{L}\chi '} \frac{\pi \lambda (2+\lambda )^3}{8(1+\lambda )^5} \left( Y_0 + \frac{1}{2} (\lambda ^2+2\lambda +4) Y_2 \right. \\&\quad \left. + \frac{3}{8} [8+\lambda (2+\lambda )(4+2\lambda +\lambda ^2)] Y_4 \right) \!,\\ D_{zz}&= \frac{v_F^2}{\omega _\mathrm{L}\chi '} \frac{\pi (2+\lambda )^2}{4(1+\lambda )^5} \left( Y_0 - \frac{1}{2} (\lambda ^2+2\lambda -2) Y_2 \right. \\&\quad - \frac{1}{8} \left. [-8+\lambda (2+\lambda )(8+2\lambda +\lambda ^2)] Y_4 \right) \!, \end{aligned}$$

where

$$\begin{aligned} \chi ' = \frac{2+Y_0}{3+F_0^a(2+Y_0)} \approx \frac{2}{3+2F_0^a},\qquad \lambda = -F_0^a \chi '. \end{aligned}$$

Note that at least three terms in the expansion over Yosida functions are needed to reach reasonable accuracy even at temperatures below \(0.2 T_\mathrm{c}\). On the other hand, it is enough to keep the zeroth term of the expansion over \((\omega _\mathrm{L}\tau )^{-1}\) (i.e. the \(\tau \)-independent term) for satisfactory calculation of \(D\) at frequencies \(\omega _\mathrm{L}/2\pi \sim 1\,\)MHz and temperatures \(T < 0.25 T_\mathrm{c}\). This has an important consequence for the thermometry. Even if some magnetic relaxation is associated with the sample boundaries and \(\tau \) becomes smaller than in the infinite bulk liquid, the operation of the magnon-condensate thermometer would not be affected provided that \(\omega _\mathrm{L}\tau \gg 1\).

The exponential temperature suppression of \(D\) comes from the behaviour of Yosida functions at low temperatures,

$$\begin{aligned} Y_n(T,\Delta ) = 2\Gamma [(n+1)/2] \left( \frac{T}{\Delta }\right) ^{(n-1)/2} \exp \left( -\frac{\Delta }{T}\right) . \end{aligned}$$

For our pressure 4.1 bar \(F^0_a = -0.73\) and thus

$$\begin{aligned} D_{xx} = \frac{v_F^2}{\omega _\mathrm{L}} \left[ 0.659 +2.234 \left( \frac{T}{\Delta }\right) +19.90 \left( \frac{T}{\Delta }\right) ^2 \right] \sqrt{\frac{\Delta }{T}} \exp \left( -\frac{\Delta }{T}\right) \!,\\ D_{zz} = \frac{v_F^2}{\omega _\mathrm{L}} \left[ 0.474 -0.185 \left( \frac{T}{\Delta }\right) -11.71 \left( \frac{T}{\Delta }\right) ^2 \right] \sqrt{\frac{\Delta }{T}} \exp \left( -\frac{\Delta }{T}\right) \!. \end{aligned}$$

Note that in \(^3\)He-B \(D_{xx} \ne D_{zz}\) in general. This should be taken into account where necessary [57]. For example Eq. (6) should be written as

$$\begin{aligned} \tau _{\mathrm {SD}}^{-1} = \frac{65}{96} \frac{\omega _{\mathrm {L}}}{\xi ^2_{\mathrm {D}}\Omega _B^2} (2D_{xx}\omega _r + D_{zz}\omega _z). \end{aligned}$$

In this work \(\omega _z\ll \omega _r\) and therefore this correction is not important.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikkinen, P.J., Autti, S., Eltsov, V.B. et al. Microkelvin Thermometry with Bose–Einstein Condensates of Magnons and Applications to Studies of the AB Interface in Superfluid \(^3\)He. J Low Temp Phys 175, 681–705 (2014). https://doi.org/10.1007/s10909-014-1173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1173-x

Keywords

Navigation