Skip to main content
Log in

Current Sensing Noise Thermometry: A Fast Practical Solution to Low Temperature Measurement

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe the design and performance of a series of fast, precise current sensing noise thermometers. The thermometers have been fabricated with a range of resistances from 1.290 \(\Omega \) down to 0.2 m\(\Omega \). This results in either a thermometer that has been optimised for speed, taking advantage of the improvements in superconducting quantum interference device noise and bandwidth, or a thermometer optimised for ultra-low temperature measurement, minimising the system noise temperature. With a single temperature calibration point, we show that noise thermometers can be used for accurate measurements over a wide range of temperatures below 4 K. Comparisons with a melting curve thermometer, a calibrated germanium thermometer and a pulsed platinum nuclear magnetic resonance thermometer are presented. For the 1.290 \(\Omega \) resistance we measure a 1 % precision in just 100 ms, and have shown this to be independent of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Batey, A. Casey, M.N. Cuthbert, A.J. Matthews, J. Saunders, A. Shibahara, New J. Phys. 15, 113034 (2013)

    Article  ADS  Google Scholar 

  2. O.V. Lounasmaa, Experimental principles and methods below 1 K (Academic Press, London, 1974)

    Google Scholar 

  3. C. Enss, S. Hunklinger, Low Temperature Physics (Springer, Berlin, 2005)

    Google Scholar 

  4. F. Pobell, Matter an Methods at Low Temperatures (Springer, Oxford, 2007)

    Book  Google Scholar 

  5. BIPM, Procès-Verbaux des Séances du Comité International des Poids et Mesures 68, 128 (2001).

    Google Scholar 

  6. R.L. Rusby, M. Durieux, A.L. Reesink, R.P. Hudson, G. Schuster, M. Kühne, W.E. Fogle, R.J. Soulen, D.E. Adams, J. Low Temp. Phys. 126, 633 (2002)

    Article  ADS  Google Scholar 

  7. C.P. Lusher, V.A. Junyun Li, M.E. Maidanov, H. Digby, A. Dyball, J. Casey, V.V. Nyéki, B.P. Dmitriev, J.Saunders Cowan, Meas. Sci. Technol. 12, 1 (2001)

    Article  ADS  Google Scholar 

  8. T. Varpula, H. Seppä, Rev. Sci. Instrum. 64(6), 1593 (1993)

    Article  ADS  Google Scholar 

  9. J. Beyer, D. Drung, A. Kirste, J. Engert, A. Netsch, A. Fleischmann, C. Enss, IEEE Trans. Appl. Supercond. 17, 2 (2007)

    Article  Google Scholar 

  10. J. Engert, J. Beyer, D. Drung, A. Kirste, D. Heyer, A. Fleischmann, C. Enss, H.-J. Barthelmess, J. Phys. C 150, 12012 (2009)

    Google Scholar 

  11. D. Rothfuß, A. Reiser, A. Fleischmann, C. Enss, Appl. Phys. Lett. 103, 052605 (2013)

    Article  ADS  Google Scholar 

  12. J.P. Pekola, K.P. Hirvi, J.P. Kauppinen, M.A. Paalanen, Phys. Rev. Lett. 73, 2903 (1994)

    Article  ADS  Google Scholar 

  13. R.P. Giffard, R.A. Webb, J.C. Wheatley, J. Low Temp. Phys. 6, 533–610 (1972)

    Article  ADS  Google Scholar 

  14. R.A. Webb, R.P. Giffard, J.C. Wheatley, J. Low Temp. Phys. 13, 383–429 (1973)

    Article  ADS  Google Scholar 

  15. R.A. Webb, S. Washburn, AIP. Conf. Proc. 103, 453–466 (1983)

    Article  ADS  Google Scholar 

  16. J.B. Johnson, Phys. Rev. 32, 97 (1928)

    Article  ADS  Google Scholar 

  17. D. Drung, C. Aßmann, J. Beyer, A. Kirste, M. Peters, F. Ruede, Th Schurig, IEEE Trans. Appl. Supercond. 17, 699 (2007)

    Article  ADS  Google Scholar 

  18. Quantum Design, Inc., 6325 Lusk Boulevard, San Diego, CA 92121, USA. http://www.qdusa.com

  19. A. Casey, B.P. Cowan, H. Dyball, J. Li, C.P. Lusher, V. Maidanov, J. Nyéki, J. Saunders, Dm Shvarts, Physics of Condensed Matter. Phys. B 329–333, 1556 (2003)

    Article  Google Scholar 

  20. Goodfellow Cambridge Ltd, Ermine Business Park, Huntingdon, England PE29 6WR. http://www.Goodfellow.com

  21. W.F. Giauque, D.N. Lyon, E.W. Hornung, T.E. Hopkins, J. Chem. Phys. 37, 1446 (1962)

    Article  ADS  Google Scholar 

  22. G.S. Cieloszyk, P.J. Cote, G.L. Salinger, J.C. Williams, Rev. Sci. Instrum. 46, 1182 (1975)

    Article  ADS  Google Scholar 

  23. Magnicon GmbH, Lemsahler Landstr. 171, Hamburg, Germany. http://www.Magnicon.com

  24. National Instruments Corporation, 1105 N Mopac Expressway, Austin, TX 78759–3504, USA. http://www.ni.com

  25. J.G.C. Milne, Phys. Rev. 122, 387–388 (1961)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Metrology Research Program (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. Additional support was through the MICROKELVIN project. We acknowledge the support of the European Community - Research Infrastructures under the FP7 Capacities Specific Programme, MICROKELVIN project number 228464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Casey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casey, A., Arnold, F., Levitin, L.V. et al. Current Sensing Noise Thermometry: A Fast Practical Solution to Low Temperature Measurement. J Low Temp Phys 175, 764–775 (2014). https://doi.org/10.1007/s10909-014-1147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1147-z

Keywords

Navigation