Skip to main content
Log in

Impurity Effects in a Vortex Core in a Chiral p-Wave Superconductor Within the t-Matrix Approximation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study the effects of non-magnetic impurity scattering on the Andreev bound states (ABS) in an isolated vortex in two-dimensional chiral p-wave superconductors numerically. We incorporate the impurity scattering effects into the quasiclassical Eilenberger formulation through the self-consistent t-matrix approximation. Within this scheme, we calculate the local density of states (LDOS) around two types of vortices: “parallel” (“anti-parallel”) vortex where the phase winding of the pair-potential coming from the vorticity and that coming from the chirality have the same (opposite) sign.

When the scattering phase-shift δ 0 of each impurity is small, we find that the impurities affect differently the spectra of quasiparticles localized around the two types of vortices in a way similar to that in the Born limit (δ 0→0). For a larger δ 0(≲π/2), ABS in the vortex is strongly suppressed by the impurities for both types of vortices. We find that there are some correlations between the suppression of ABS near vortex cores and the low energy density of states due to the impurity bands in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, F. Lichtenberg, Nature (London) 372, 532 (1994)

    Article  ADS  Google Scholar 

  2. A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)

    Article  ADS  Google Scholar 

  3. M. Sigrist, Prog. Theor. Phys. Suppl. 160, 1 (2005)

    Article  ADS  Google Scholar 

  4. Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, K. Ishida, J. Phys. Soc. Jpn. 81, 011009 (2012)

    Article  ADS  Google Scholar 

  5. A.B. Vorontsov, J.A. Sauls, Phys. Rev. B 68, 064508 (2003)

    Article  ADS  Google Scholar 

  6. R. Heeb, D.F. Agterberg, Phys. Rev. B 59, 7076 (1999)

    Article  ADS  Google Scholar 

  7. T.A. Tokuyasu, D.W. Hess, J.A. Sauls, Phys. Rev. B 41, 8891 (1990)

    Article  ADS  Google Scholar 

  8. M. Matsumoto, R. Heeb, Phys. Rev. B 65, 014504 (2001)

    Article  ADS  Google Scholar 

  9. Y. Kato, N. Hayashi, J. Phys. Soc. Jpn. 70, 3368 (2001)

    Article  ADS  Google Scholar 

  10. M. Matsumoto, M. Sigrist, Physica B 281–282, 973 (2000)

    Article  Google Scholar 

  11. Y. Kato, J. Phys. Soc. Jpn. 69, 3378 (2000)

    Article  ADS  Google Scholar 

  12. Y. Kato, N. Hayashi, J. Phys. Soc. Jpn. 71, 1721 (2002)

    Article  ADS  Google Scholar 

  13. N. Hayashi, Y. Kato, M. Sigrist, J. Low Temp. Phys. 139, 79 (2005)

    ADS  Google Scholar 

  14. Y. Tanuma, N. Hayashi, Y. Tanaka, A.A. Golubov, Phys. Rev. Lett. 102, 117003 (2009)

    Article  ADS  Google Scholar 

  15. C. Caroli, P.G. de Gennes, J. Matricon, Phys. Lett. 9, 30 (1964)

    Article  Google Scholar 

  16. M. Stone, Phys. Rev. B 54, 13222 (1996)

    Article  ADS  Google Scholar 

  17. T. Yokoyama, C. Iniotakis, Y. Tanaka, M. Sigrist, Phys. Rev. Lett. 100, 177002 (2008)

    Article  ADS  Google Scholar 

  18. Y. Tanaka, M. Sato, N. Nagaosa, J. Phys. Soc. Jpn. 81, 011013 (2012)

    Article  ADS  Google Scholar 

  19. S. Schmitt-Rink, K. Miyake, C.M. Varma, Phys. Rev. Lett. 57, 2527 (1986)

    Google Scholar 

  20. P. Hirshfeld, D. Vollhardt, P. Wölfle, Solid State Commun. 59, 111 (1986)

    Article  ADS  Google Scholar 

  21. L. Kramer, W. Pesch, Z. Phys. 269, 59 (1974)

    ADS  Google Scholar 

  22. N. Hayashi, Y. Higashi, N. Nakai, H. Suematsu, Physica C 484, 69 (2013)

    Article  ADS  Google Scholar 

  23. N. Hayashi, N. Kurosawa, E. Arahata, Y. Kato, Y. Tanuma, Y. Tanaka, A.A. Golubov, Physica C 494, 131 (2013)

    Article  ADS  Google Scholar 

  24. R.W. Hill, C. Lupien, M. Sutherland, E. Boaknin, D.G. Hawthorn, D.G.C. Proust, F. Ronning, L. Taillefer, R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. Lett. 92, 027001 (2004)

    Article  ADS  Google Scholar 

  25. J.A. Sauls, M. Eschrig, New J. Phys. 11, 075008 (2009)

    Article  ADS  Google Scholar 

  26. G. Eilenberger, Z. Phys. 214, 195 (1968)

    ADS  Google Scholar 

  27. E.V. Thuneberg, J. Kurkijärvi, D. Rainer, Phys. Rev. B 29, 3913 (1984)

    Article  ADS  Google Scholar 

  28. A.I. Larkin, Z. Eksp. Teor. Fiz. Pis’ma Red. 2, 205 (1965). [JETP Lett., 2, 130, 1965]

    ADS  Google Scholar 

  29. V.P. Mineev, K.V. Samokhin, Introduction to Unconventional Superconductivity (Gordon and Breach Science Publishers, New York, 1999)

    Google Scholar 

  30. Y. Nagato, K. Nagai, J. Hara, J. Low Temp. Phys. 93, 33 (1993)

    Article  ADS  Google Scholar 

  31. N. Schopohl, K. Maki, Phys. Rev. B 52, 490 (1995)

    Article  ADS  Google Scholar 

  32. J.A. Sauls, Private communication

  33. K. Maki, E. Puchkaryov, Europhys. Lett. 45, 263 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 23244070. We thank J.A. Sauls for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Kurosawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurosawa, N., Hayashi, N., Arahata, E. et al. Impurity Effects in a Vortex Core in a Chiral p-Wave Superconductor Within the t-Matrix Approximation. J Low Temp Phys 175, 365–371 (2014). https://doi.org/10.1007/s10909-013-0951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0951-1

Keywords

Navigation