Skip to main content
Log in

Thermodynamics of an Ideal Bose Gas with a Finite Number of Particles Confined in a Three-Dimensional Quartic Trap

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Within an exact canonical-ensemble treatment, we investigate the thermodynamics for a finite number of ideal bosons confined in a three-dimensional quartic trap. We calculate several physical quantities including the specific heat C N , chemical potential μ, condensate fraction 〈n 0〉/N, root-mean-square fluctuations δn 0 of the condensate population, and transition temperature T c . We discuss the particle-number dependence of T c through proposing three T c definitions, which are compared with ones derived in the grand canonical ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Making, probing and understanding Bose-Einstein condensates, in Bose-Einstein Condensation in Atomic Gases: Proceedings of the International School of Physics “Enrico Fermi”, Course CXL, ed. by M. Inguscio, S. Stringari, C.E. Wiemann (IOS Press, Amsterdam, 1999), pp. 67–176

    Google Scholar 

  2. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  3. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  4. D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.J. Miesner, J. Stenger, W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998)

    Article  ADS  Google Scholar 

  5. J.H. Wang, Y.L. Ma, J. Phys. B, At. Mol. Opt. Phys. 42, 245301 (2009)

    Article  ADS  Google Scholar 

  6. G.Z. Su, J.C. Chen, Eur. J. Phys. 31, 143 (2010)

    Article  MATH  Google Scholar 

  7. J.H. Wang, Y.L. Ma, Phys. Rev. A 79, 033604 (2009)

    Article  ADS  Google Scholar 

  8. J.H. Wang, H.Y. Tang, Y.L. Ma, Ann. Phys. 326, 634 (2011)

    Article  ADS  MATH  Google Scholar 

  9. J.H. Wang, J.Z. He, Y.L. Ma, Phys. Rev. E 83, 051132 (2011)

    Article  ADS  Google Scholar 

  10. J.H. Wang, Y.L. Ma, J.Z. He, J. Low Temp. Phys. 162, 23 (2011)

    Article  ADS  Google Scholar 

  11. J.H. Wang, J.Z. He, Eur. Phys. J. D 64, 73 (2011)

    Article  ADS  Google Scholar 

  12. J.H. Wang, J.Z. He, J. Low Temp. Phys. 166, 80 (2012)

    Article  ADS  Google Scholar 

  13. K.E. Dorfman, M. Kim, A.A. Svidzinsky, Phys. Rev. A 83, 033609 (2011)

    Article  ADS  Google Scholar 

  14. K. Glaum, H. Kleinert, A. Pelster, Phys. Rev. A 76, 063604 (2007)

    Article  ADS  Google Scholar 

  15. P. Navez, D. Bitouk, M. Gajda, Z. Idziaszek, K. Rzazewski, Phys. Rev. Lett. 79, 1789 (1997)

    Article  ADS  Google Scholar 

  16. M. Wilkens, C. Weiss, J. Mod. Opt. 44, 1801 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. C. Weiss, M. Wilkens, Opt. Express 1, 272 (1997)

    Article  ADS  Google Scholar 

  18. P. Borrmann, J. Harting, O. Mülken, E.R. Hilf, Phys. Rev. A 60, 1519 (1999)

    Article  ADS  Google Scholar 

  19. D.H.E. Gross, E.V. Votyakov, Eur. Phys. J. B 15, 115 (2000)

    ADS  Google Scholar 

  20. D.H.E. Gross, Nucl. Phys. A 681, 366 (2001)

    Article  ADS  MATH  Google Scholar 

  21. V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004)

    Article  ADS  Google Scholar 

  22. S. Stock, V. Bretin, F. Chevy, J. Dalibard, Europhys. Lett. 65, 594 (2004)

    Article  ADS  Google Scholar 

  23. M. Cozzini, B. Jackson, S. Stringari, Phys. Rev. A 73, 013603 (2006)

    Article  ADS  Google Scholar 

  24. E.Ö. Karabulut, M. Koyuncu, M. Tomak, Physica A 389, 1371 (2010)

    Article  ADS  Google Scholar 

  25. S. Gautam, D. Angom, Eur. Phys. J. D 46, 151 (2008)

    Article  ADS  Google Scholar 

  26. A.L. Fetter, B. Jackson, S. Stringari, Phys. Rev. A 71, 013605 (2005)

    Article  ADS  Google Scholar 

  27. A.L. Fetter, Phys. Rev. A 64, 063608 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  28. O. Gygi, H.G. Katzgraber, M. Troyer, S. Wessel, G.G. Batrouni, Phys. Rev. A 73, 063606 (2006)

    Article  ADS  Google Scholar 

  29. L. Wen, Y.L. Ma, Int. J. Mod. Phys. B 22, 5003 (2008)

    Article  ADS  MATH  Google Scholar 

  30. G.K. Chaudhary, A.K. Chattopadhyay, R. Ramakumar, Int. J. Mod. Phys. B 25, 3927 (2011)

    Article  ADS  Google Scholar 

  31. P.M. Mathews, M. Seetharaman, S. Raghavan, J. Phys. A 15, 103 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Napolitano, J. De Luca, V.S. Bagnato, G.C. Marques, Phys. Rev. A 55, 3954 (1997)

    Article  ADS  Google Scholar 

  33. G.-X. Hu, X.-X. Dai, J.-X. Dai, W.E. Evenson, J. Low Temp. Phys. 133, 239 (2003)

    Article  Google Scholar 

  34. V.V. Kocharovsky, Vl.V. Kocharovsky, M.O. Scully, Phys. Rev. A 61, 053606 (2000)

    Article  ADS  Google Scholar 

  35. S. Grossmann, M. Holthaus, Phys. Lett. A 208, 188 (1995)

    Article  ADS  Google Scholar 

  36. V. Bagnato, D.E. Pritchard, D. Kleppner, Phys. Rev. A 35, 4354 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants No. 11147200 and 11065008, and the Foundation of Jiangxi Educational Committee under Grant No. GJJ12136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Wang.

Appendix: Thermodynamics of an IBG in the Thermodynamic Limit

Appendix: Thermodynamics of an IBG in the Thermodynamic Limit

For an IBG in a quartic potential, one has the density of states [25]

(13)

The total number N of the particles as a function of density of states is given by

(14)

which, after integration, becomes

(15)

where N 0 is the particle number of the ground state, z=e μ/kT a fugacity, and \(g_{n}(z) =\sum_{l=1}^{\infty}\frac{z^{l}}{l^{n}} \) denote the Bose-Einstein functions. The mean energy U of the N-particle system is

(16)

where the energy of the ground state ϵ 0=0 has been used. The specific heat capacity can be determined by differentiation with respect to temperature, namely, \(C_{N}=\frac{\partial U}{\partial T}\), which leads to the specific heat above the critical temperature \(T_{c}^{0}\)

(17)
(18)

and the specific heat below \(T_{c}^{0}\)

(19)

When \(T>T_{c}^{0}\), we obtain by using the condition \(\frac{\partial N}{\partial T}=0\)

(20)

It is not verify to find that

(21)

Clearly, in the thermodynamic limit the specific heat becomes discontinuous at the critical temperature \(T_{c}^{0}\) and its maximum is equal to 5.0805. The magnitude of the jump \(\frac{\Delta C_{N}}{N k}=\frac{9}{4} \frac{\varGamma(13/4)}{\varGamma(9/4)} \frac{\zeta(\frac{9}{4})}{ \zeta(\frac{5}{4})}\simeq1.6087\) is quite significant. It indicates that the specific heat of quartically trapped, ideal bosons at the onset of condensation displays some resemblance to the specific heat of liquid 4He in the vicinity of the λ-point. As in the case of harmonic trap, the reason for the emergence of the λ-like phase transition for the quartic trap is attributed to the trapping potential instead of the interactions between atoms in the case of 4He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhuang, B. & He, J. Thermodynamics of an Ideal Bose Gas with a Finite Number of Particles Confined in a Three-Dimensional Quartic Trap. J Low Temp Phys 170, 99–107 (2013). https://doi.org/10.1007/s10909-012-0669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0669-5

Keywords

Navigation