Skip to main content
Log in

A Summary of Mass Flux Measurements in Solid 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Here we provide a summary and brief review of some of the work done with solid 4He at the University of Massachusetts Amherst below a sample pressure of 28 bar. The motivation for the work has been to attempt to pass 4He atoms through solid 4He without directly applying mechanical pressure to the solid itself. The specific technique chosen is limited to pressures near the melting curve and was initially designed to provide a yes/no answer to the question of whether or not it might be possible to observe such a mass flux. The thermo-mechanical effect and direct mass injection have been separately used to create chemical potential differences between two reservoirs of superfluid 4He connected to each other through superfluid-filled Vycor rods in series with solid 4He, which is in the hcp region of the phase diagram. The thermo-mechanical effect is a more versatile approach. And, in a particular symmetric application it is designed to provide a mass flux with little or no net increase in the density of the solid. Our observations, off but near the melting curve, have included: (1) the presence of an increasing DC flux of atoms through the solid-filled cell with decreasing temperature below ≈650 mK and no flux above this temperature; (2) the presence of a flux minimum and flux instability in the vicinity of 75–80 mK, with a flux increase at lower temperatures; (3) the temperature dependence of the flux above 100 mK and the dependence of the flux on the net driving chemical potential difference provide interesting insights on the possible mechanism that leads to the flux above 100 mK. The most recent data suggest that whatever is responsible for the flux in solid 4He, at least for T>100 mK, may be an example of a Bosonic Luttinger liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Andreev, I. Lifshitz, Sov. Phys. JETP 29, 1107 (1969)

    ADS  Google Scholar 

  2. G.V. Chester, Phys. Rev. A 2, 256 (1970)

    Article  ADS  Google Scholar 

  3. A.J. Leggett, Phys. Rev. Lett. 25, 1543 (1970)

    Article  ADS  Google Scholar 

  4. D.S. Greywall, Phys. Rev. B 16, 1291 (1977)

    Article  ADS  Google Scholar 

  5. D.J. Bishop, M.A. Paalanen, J.D. Reppy, Phys. Rev. B 24, 2844 (1981)

    Article  ADS  Google Scholar 

  6. P. Ho, I. Bindloss, J. Goodkind, J. Low Temp. Phys. 109, 409 (1997)

    ADS  Google Scholar 

  7. E. Kim, M.H.W. Chan, Nature (London) 427, 225 (2004)

    Article  ADS  Google Scholar 

  8. E. Kim, M.H.W. Chan, Science 305, 1941 (2004)

    Article  ADS  Google Scholar 

  9. D.Y. Kim, J.T. West, T.A. Engstrom, N. Mulders, M.H.W. Chan, Phys. Rev. B 85, 024533 (2012)

    Article  ADS  Google Scholar 

  10. J. Day, J. Beamish, Nature (London) 450, 853 (2007)

    Article  ADS  Google Scholar 

  11. X. Mi, J.D. Reppy, Phys. Rev. Lett. 108, 225305 (2012)

    Article  ADS  Google Scholar 

  12. J.D. Reppy, Phys. Rev. Lett. 104, 255301 (2010)

    Article  ADS  Google Scholar 

  13. J. Day, T. Herman, J. Beamish, Phys. Rev. Lett. 95, 035301 (2005)

    Article  ADS  Google Scholar 

  14. J. Day, J. Beamish, Phys. Rev. Lett. 96, 105304 (2006)

    Article  ADS  Google Scholar 

  15. A.S.C. Rittner, W. Choi, E.J. Mueller, J.D. Reppy, Phys. Rev. B 80, 224516 (2009)

    Article  ADS  Google Scholar 

  16. M.W. Ray, R.B. Hallock, Phys. Rev. Lett. 100, 235301 (2008)

    Article  ADS  Google Scholar 

  17. M.W. Ray, R.B. Hallock, Phys. Rev. B 79, 224302 (2009)

    Article  ADS  Google Scholar 

  18. M.W. Ray, R.B. Hallock, Phys. Rev. Lett. 105, 145301 (2010)

    Article  ADS  Google Scholar 

  19. M.W. Ray, R.B. Hallock, Phys. Rev. B 84, 144512 (2011)

    Article  ADS  Google Scholar 

  20. Ye. Vekhov, R.B. Hallock. Phys. Rev. Lett. (2012, in press). http://arxiv.org/abs/1205.5751

  21. M.W. Ray, R.B. Hallock, Phys. Rev. B 81, 214523 (2010)

    Article  ADS  Google Scholar 

  22. M.W. Ray, R.B. Hallock, Phys. Rev. B 82, 012502 (2010)

    Article  ADS  Google Scholar 

  23. S.G. Soyler, A.B. Kuklov, L. Pollet, N.V. Prokof’ef, B.V. Svistunov, Phys. Rev. Lett. 103, 175301 (2009)

    Article  ADS  Google Scholar 

  24. A. Suhel, J.R. Beamish, Phys. Rev. B 84, 094512 (2011)

    Article  ADS  Google Scholar 

  25. S. Sasaki, F. Caupin, S. Balibar, Phys. Rev. Lett. 99, 205302 (2007)

    Article  ADS  Google Scholar 

  26. S. Balibar, F. Caupin, Phys. Rev. Lett. 101, 189601 (2008)

    Article  ADS  Google Scholar 

  27. M.W. Ray, R.B. Hallock, Phys. Rev. Lett. 101, 189602 (2008)

    Article  ADS  Google Scholar 

  28. A.B. Kuklov, N.V. Prokof’ef, B.V. Svistunov, Physics 4, 109 (2011)

    Article  Google Scholar 

  29. M. Boninsegni, N.V. Prokof’ef, Rev. Mod. Phys. 84, 759 (2012)

    Article  ADS  Google Scholar 

  30. A. Penzev, Y. Yasuta, M. Kubota, Phys. Rev. Lett. 101, 065301 (2008)

    Article  ADS  Google Scholar 

  31. D. Aleinikava, A.B. Kuklov, Phys. Rev. Lett. 106, 235302 (2011)

    Article  ADS  Google Scholar 

  32. R.B. Hallock, J. Phys.: Conf. Ser. (IOP Publishing, LT26, in press)

  33. M. Boninsegni, A.B. Kuklov, L. Pollet, N.V. Prokof’ef, B.V. Svistinov, M. Troyer, Phys. Rev. Lett. 99, 035301 (2007)

    Article  ADS  Google Scholar 

  34. A. Del Maestro, I. Affleck, Phys. Rev. B 82, 060515R (2010)

    Article  ADS  Google Scholar 

  35. A. Del Maestro, M. Boninsegni, I. Affleck, Phys. Rev. Lett. 106, 105303 (2011)

    Article  ADS  Google Scholar 

  36. T. Eggel, M.A. Cazalilla, M. Oshikawa, Phys. Rev. Lett. 107, 275302 (2011)

    Article  ADS  Google Scholar 

  37. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues B. Svistunov and N. Prokof’ef for many stimulating and illuminating discussions over the course of our work. We have also had helpful conversations with many others including D. Aleinikava, S. Balibar, J. Beamish, M.H.W. Chan, E. Kim, H. Kojima, A. Kuklov, J. Machta, W.M. Mullin and J.D. Reppy. This work was supported by the National Science Foundation primarily through National Science Foundation grant DMR 08-55954, with some support from DMR 07-57701 and with initial support from DMR 06-50092. We have also benefitted from support from Research Trust Funds provided by the University of Massachusetts Amherst and occasional access to facilities provided by the MRSEC (NSF DMR 08-20506) at the University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Hallock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallock, R.B., Ray, M.W. & Vekhov, Y. A Summary of Mass Flux Measurements in Solid 4He. J Low Temp Phys 169, 264–277 (2012). https://doi.org/10.1007/s10909-012-0660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0660-1

Keywords

Navigation