Skip to main content
Log in

Possible High-Temperature Superconductivity in Multilayer Graphane: Can the Cuprates be Beaten?

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We analyze a possible superconductivity in the hole-doped system of layered hydrogenized graphene by taking into account thermal fluctuations of the order parameter. In particular, we demonstrate that in the one-layer case the values of the high mean-field (MF) critical temperature \(T_{\mathrm{\mathrm{c}}}^{\mathrm{MF}}\sim 80\)–90 K, predicted recently by Savini et al (Phys. Rev. Lett. 105:037002, 2010), do not alter significantly due to the fluctuations, and the Berezinskii-Kosterlitz-Thouless (BKT) critical temperature of the vortex superconductivity is almost the same as the MF temperature at doping 0.01–0.1. We show that in the case of multilayer system, when the coupling between the layers stabilizes the superconducting phase in the form of fluxon superconductivity, the critical temperature T c can increase dramatically to the values ∼150 K, higher than the corresponding values in cuprates under ambient pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. Savini, A.C. Ferrari, F. Giustino, Phys. Rev. Lett. 105, 037002 (2010)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. Y. Kopelevich, P. Esquinazi, J.H.S. Torres, S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000)

    Article  Google Scholar 

  4. R.R. da Silva, J.H.S. Torres, Y. Kopelevich, Phys. Rev. Lett. 87, 147001 (2001)

    Article  ADS  Google Scholar 

  5. S. Moehlecke, Y. Kopelevich, M.B. Maple, Phys. Rev. B 69, 134519 (2004)

    Article  ADS  Google Scholar 

  6. N.B. Hannay et al., Phys. Rev. Lett. 14, 225 (1965)

    Article  ADS  Google Scholar 

  7. Y. Koike, H. Suematsu, K. Higuchi, S. Tanuma, Physica B+C 99, 503 (1980)

    Article  ADS  Google Scholar 

  8. Th.E. Weller, M. Ellerby, S.S. Saxena, Nat. Phys. 1, 39 (2005)

    Article  Google Scholar 

  9. B. Uchoa, G.G. Cabrera, A.H. Castro Neto, Phys. Rev. B 71, 184509 (2005)

    Article  ADS  Google Scholar 

  10. B. Uchoa, A.H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007)

    Article  ADS  Google Scholar 

  11. E. Zhao, A. Paramekanti, Phys. Rev. Lett. 97, 230404 (2006)

    Article  ADS  Google Scholar 

  12. E.C. Marino, L.H.C.M. Nunes, Nucl. Phys. B 741, 404 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. E.C. Marino, L.H.C.M. Nunes, Physica, A 460–462, 1101 (2007)

    Google Scholar 

  14. E.C. Marino, L.H.C.M. Nunes, Nucl. Phys. B 769, 275 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A.M. Black-Schaffer, S. Doniach, Phys. Rev. B 75, 134512 (2007)

    Article  ADS  Google Scholar 

  16. C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008)

    Article  ADS  Google Scholar 

  17. N.B. Kopnin, E.B. Sonin, Phys. Rev. Lett. 100, 246808 (2008)

    Article  ADS  Google Scholar 

  18. J. Gonzales, Phys. Rev. B 78, 205431 (2008)

    Article  ADS  Google Scholar 

  19. V.M. Loktev, V. Turkowski, Phys. Rev. B 79, 233402 (2009)

    Article  ADS  Google Scholar 

  20. V.M. Loktev, V.M. Turkowski, S.G. Sharapov, Theor. Math. Phys. 115, 694 (1998)

    Article  MATH  Google Scholar 

  21. V.M. Loktev, V. Turkowski, Low Temp. Phys. 30, 179 (2004)

    Article  ADS  Google Scholar 

  22. V.M. Loktev, S.G. Sharapov, V.M. Turkowski, Physica C 296, 84 (1998)

    Article  ADS  Google Scholar 

  23. V.M. Loktev, R.M. Quick, S.G. Sharapov, Phys. Rep. 349, 1 (2001)

    Article  ADS  MATH  Google Scholar 

  24. V.M. Loktev, V. Turkowski, Phys. Rev. B 67, 214510 (2003)

    Article  ADS  Google Scholar 

  25. P. Cudazzo et al., Phys. Rev. Lett. 104, 226804 (2010)

    Article  ADS  Google Scholar 

  26. V. Tokatly, Preprint. arXiv:1004.0624 (2010)

  27. W.A. Harrison, Elementary Electronic Structure (World Scientific, Singapore, 2004)

    Google Scholar 

  28. J. Rohrer, P. Hyldgaard, Preprint. arXiv:1010.2925 (2010)

  29. N. Kristoffel, P. Rubin, Phys. Lett. A 356, 242 (2006)

    Article  ADS  MATH  Google Scholar 

  30. M. Randeria, in Bose-Einstein Condensation, ed. by A. Griffin, D.W. Snoke, S. Stringati (Cambridge University Press, New York, 1995), p. 335

    Google Scholar 

  31. B. Horovitz, Phys. Rev. Lett. 67, 378 (1991)

    Article  ADS  Google Scholar 

  32. B. Horovitz, Phys. Rev. B 47, 5947 (1993)

    Article  ADS  Google Scholar 

  33. P.L. Taylor, O. Heinonen, A Quantum Approach to Condensed Matter Physics (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Turkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loktev, V.M., Turkowski, V. Possible High-Temperature Superconductivity in Multilayer Graphane: Can the Cuprates be Beaten?. J Low Temp Phys 164, 264–271 (2011). https://doi.org/10.1007/s10909-011-0376-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-011-0376-7

Keywords

Navigation