Skip to main content
Log in

Theoretical Study of Quantum Gel Formation in Superfluid 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Bosonic density functional theory calculations were carried out for neon, argon, and fluorine based systems in superfluid 4He with an emphasis on the formation of dimeric species in the liquid. These atomic species display relatively strong binding with helium and hence their solvation structures in the liquid exhibit highly localized liquid helium layers around them. These solvent layers modify the gas phase dimer potentials by inclusion of a recombination barrier, which provides stabilization for the solvated atoms. Of closed shell species neon is shown to exhibit a recombination barrier of 3 K for the dimer and up to 5.8 K for specific cluster geometries. For argon, the liquid induced potential barrier is only 0.7 K and it has a rather large amount of excess energy available along the recombination coordinate indicating that it is not possible to stabilize argon atoms in superfluid helium. Atomic fluorine shows the most pronounced effect with the recombination barrier of 26.8 K for producing ground state F2. It is concluded that neon and fluorine atoms are good candidates to form impurity based quantum gels in bulk superfluid helium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Toennies, A.F. Vilesov, Annu. Rev. Phys. Chem. 49, 1 (1998)

    Article  ADS  Google Scholar 

  2. F. Stienkemeier, A.F. Vilesov, J. Chem. Phys. 115, 10119 (2001)

    Article  ADS  Google Scholar 

  3. A. Hernando, R. Mayol, M. Pi, M. Barranco, F. Ancilotto, O. Bünermann, F. Stienkemeier, J. Phys. Chem. A 111, 7303 (2007)

    Article  Google Scholar 

  4. Q. Hui, M. Takami, J. Low Temp. Phys. 119, 393 (2000)

    Article  Google Scholar 

  5. T. Kinoshita, K. Fukuda, Y. Takahashi, T. Yabuzaki, Phys. Rev. A 52, 2707 (1995)

    Article  ADS  Google Scholar 

  6. B. Tabbert, M. Beau, H. Günther, W. Häussler, C. Hönninger, K. Meyer, B. Plagemann, G. zu Putlitz, Z. Phys. B 97, 425 (1995)

    ADS  Google Scholar 

  7. J. Eloranta, Phys. Rev. B 77, 134301 (2008)

    Article  ADS  Google Scholar 

  8. A. Przystawik, S. Göde, T. Döppner, J. Tiggesbäumker, K.-H. Meiwes-Broer, Phys. Rev. A 78, 021202 (2008)

    Article  ADS  Google Scholar 

  9. A. Hernando, M. Barranco, R. Mayol, M. Pi, F. Ancilotto, Phys. Rev. B 78, 184515 (2008)

    Article  ADS  Google Scholar 

  10. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, J. Treiner, Phys. Rev. B 52, 1193 (1995)

    Article  ADS  Google Scholar 

  11. F. Ancilotto, M. Barranco, F. Caupin, R. Mayol, M. Pi, Phys. Rev. B 72, 214522 (2005)

    Article  ADS  Google Scholar 

  12. L. Lehtovaara, J. Toivanen, J. Eloranta, J. Comput. Phys. 221, 148 (2007)

    Article  MATH  ADS  Google Scholar 

  13. L. Lehtovaara, T. Kiljunen, J. Eloranta, J. Comput. Phys. 194, 78 (2004)

    Article  MATH  ADS  Google Scholar 

  14. S.M. Cybulski, R.R. Toczylowski, J. Chem. Phys. 111, 10520 (1999)

    Article  ADS  Google Scholar 

  15. R.A. Aziz, M.J. Slaman, Chem. Phys. 130, 187 (1989)

    Article  ADS  Google Scholar 

  16. R.A. Aziz, J. Chem. Phys. 99, 4518 (1993)

    Article  ADS  Google Scholar 

  17. M. Keil, L.J. Danielson, P.J. Dunlop, J. Chem. Phys. 94, 296 (1991)

    Article  ADS  Google Scholar 

  18. R.J. Hinde, J. Chem. Phys. 128, 154308 (2008)

    Article  ADS  Google Scholar 

  19. H. Partridge, J.R. Stallcop, E. Levin, J. Chem. Phys. 115, 6471 (2001)

    Article  ADS  Google Scholar 

  20. L. Bytautas, K. Ruedenberg, J. Chem. Phys. 130, 204101 (2009)

    Article  ADS  Google Scholar 

  21. F.A. Evangelista, E. Prochnow, J. Gauss, H.F. Schaefer III, J. Chem. Phys. 132, 074107 (2010)

    Article  ADS  Google Scholar 

  22. E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, JETP Lett. 19, 63 (1974)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Eloranta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eloranta, J. Theoretical Study of Quantum Gel Formation in Superfluid 4He. J Low Temp Phys 162, 718–723 (2011). https://doi.org/10.1007/s10909-010-0239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0239-7

Keywords

Navigation