Skip to main content

Advertisement

Log in

Quantum Effects on Hydrogen Isotopes Adsorption in Nanopores

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have investigated the applicability of simulations and theoretical techniques for exploring the selectivities of hydrogen isotopes. We have simulated the adsorption isotherms of H2 in an idealized carbon slit pore at 77 K by using the grand canonical Monte Carlo simulations with the Feynman-Hibbs effective potential (FH-GCMC) and the rigorous path integral method (PI-GCMC), and we obtained good agreement between the isotherms from both simulations. This suggests that FH-GCMC, which uses the approximative Feynman-Hibbs treatment, is as useful as PI-GCMC for exploring H2 adsorption at 77 K. Moreover, we show that the ideal adsorption solution theory (IAST) can predict the selectivity of D2 over H2 in the interstices of single-wall carbon nanotube (SWNT) bundles at 77 K (below 0.1 MPa) very well by comparing the obtained results with the mixture adsorption FH-GCMC simulations. This indicates that IAST is also applicable to the estimation of the selectivity of D2 over H2 at moderate pressures and at 77 K from experimental single-component adsorption isotherms. We also demonstrate that the FH-GCMC simulation can reproduce the experimental adsorption isotherms of H2 and D2 in aluminophosphate AlPO4-5 at 77 K. Finally, we analyze the selectivity of D2 over H2 by IAST with the experimental single-component adsorption isotherms of H2 and D2 at 77 K for a variety of adsorbents: AlPO4-5, activated carbon fibers (ACFs), HiPco SWNT, and SWNHs. The selectivities predicted by the experimental adsorption data based on the results from the FH-GCMC simulations are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids (Academic Press, San Diego, 1999)

    Google Scholar 

  2. D. Nicholson, N.G. Parsonage, Computer Simulation and the Statistical Theory of Adsorption (Academic Press, London, 1982)

    Google Scholar 

  3. R.F. Cracknell, D. Nicholson, N. Quirke, Mol. Phys. 80, 885 (1993)

    Article  ADS  Google Scholar 

  4. V. Lachet, A. Boutin, R.J.-M. Pellenq, D. Nicholson, A.H. Fuchs, J. Phys. Chem. 100, 9006 (1996)

    Article  Google Scholar 

  5. M. Miyahara, K.E. Gubbins, J. Chem. Phys. 106, 2865 (1997)

    Article  ADS  Google Scholar 

  6. M. Miyahara, H. Kanda, T. Yoshioka, M. Okazaki, Langmuir 16, 4293 (2000)

    Article  Google Scholar 

  7. M. Miyahara, H. Kanda, M. Shibao, K. Higashitani, J. Chem. Phys. 112, 9909 (2000)

    Article  ADS  Google Scholar 

  8. B. Coasne, F.R. Hung, R.J.-M. Pellenq, F.R. Siperstein, K.E. Gubbins, Langmuir 22, 194 (2006)

    Article  Google Scholar 

  9. F.R. Hung, S. Bhattachrya, B. Coasne, M. Thommes, K.E. Gubbins, Adsorption 13, 425 (2007)

    Article  Google Scholar 

  10. A.S. William, J. Chem. Phys. 25, 819 (1956)

    Article  Google Scholar 

  11. X.-P. Jiang, M.W. Cole, Phys. Rev. B 33, 2803 (1986)

    Article  ADS  Google Scholar 

  12. R.P. Feynman, A. Hibbs, Quantum Mechanics and Path-Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  13. R.P. Feynman, Statistical Mechanics (Benjamin, New York, 1972)

    Google Scholar 

  14. V. Buch, J.P. Devlin, J. Chem. Phys. 98, 4195 (1993)

    Article  ADS  Google Scholar 

  15. Q. Wang, J.K. Johnson, J.Q. Broughton, J. Chem. Phys. 107, 5108 (1997)

    Article  ADS  Google Scholar 

  16. Q. Wang, J.K. Johnson, Fluid Phase Equilib. 132, 93 (1997)

    Article  Google Scholar 

  17. F. Darkrim, D. Levesque, J. Chem. Phys. 109, 4981 (1998)

    Article  ADS  Google Scholar 

  18. L.M. Sese, Mol. Phys. 81, 1297 (1994)

    Article  ADS  Google Scholar 

  19. L.M. Sese, Mol. Phys. 85, 931 (1995)

    Article  ADS  Google Scholar 

  20. G. Stan, M.W. Cole, J. Low. Temp. Phys. 110, 539 (1998)

    Article  Google Scholar 

  21. F. Darkrim, A. Aoufi, D. Levesque, Mol. Simul. 24, 51 (2000)

    Article  Google Scholar 

  22. F. Darkrim, D. Levesque, J. Phys. Chem. B 104, 6773 (2000)

    Article  Google Scholar 

  23. D. Levesque, A. Gicquel, F.L. Darkrim, S.B. Kayiran, J. Phys., Condens. Matter 14, 9285 (2002)

    Article  ADS  Google Scholar 

  24. H. Tanaka, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, J. Am. Chem. Soc. 127, 7511 (2005)

    Article  Google Scholar 

  25. G. Garberoglio, A.I. Skoulidas, J.K. Johnson, J. Phys. Chem. B 109, 13094 (2005)

    Article  Google Scholar 

  26. A.V.A. Kumar, S.K. Bhatia, Phys. Rev. Lett. 95, 245901 (2005)

    Article  ADS  Google Scholar 

  27. P. Kowalczyk, R. Holyst, A.P. Terzyk, P.A. Gauden, Langmuir 22, 1970 (2006)

    Article  Google Scholar 

  28. A.V.A. Kumar, H. Jobic, S.K. Bhatia, J. Phys. Chem. B 110, 16666 (2006)

    Article  Google Scholar 

  29. Q. Yang, C. Zhong, J. Phys. Chem. B 110, 655 (2006)

    Article  Google Scholar 

  30. P. Kowalczyk, R. Holyst, M. Terrones, H. Terrones, Phys. Chem. Chem. Phys. 9, 1786 (2007)

    Article  Google Scholar 

  31. J. Liu, J.T. Culp, S. Natesakhawat, B.C. Bockrath, B. Zande, S.G. Sankar, G. Garberoglio, J.K. Johnson, J. Phys. Chem. C 111, 9305 (2007)

    Article  Google Scholar 

  32. H.-Y. Kim, A.D. Lueking, S.M. Gatica, J.K. Johnson, M.W. Cole, Mol. Phys. 106, 1579–1585 (2008)

    Article  ADS  Google Scholar 

  33. J. Liu, J.Y. Lee, L. Pan, R.T. Obermyer, S. Simizu, B. Zande, J. Li, S.G. Sankar, J.K. Johnson, J. Phys. Chem. C 112, 2911 (2008)

    Article  Google Scholar 

  34. D. Noguchi, H. Tanaka, A. Kondo, H. Kajiro, H. Noguchi, T. Ohba, H. Kanoh, K. Kaneko, J. Am. Chem. Soc. 130, 6367 (2008)

    Article  Google Scholar 

  35. S. Keskin, J. Liu, R.B. Rankin, J.K. Johnson, D.S. Sholl, Ind. Eng. Chem. Res. 48, 2355 (2009)

    Article  Google Scholar 

  36. Q. Wang, J.K. Johnson, Mol. Phys. 95, 299 (1998)

    Article  Google Scholar 

  37. Q. Wang, J.K. Johnson, J. Chem. Phys. 110, 577 (1999)

    Article  ADS  Google Scholar 

  38. S.M. Gatica, G. Stan, M.M. Calbi, J.K. Johnson, M.W. Cole, J. Low. Temp. Phys. 120, 337 (2000)

    Article  Google Scholar 

  39. Q. Wang, S.R. Challa, D.S. Sholl, J.K. Johnson, Phys. Rev. Lett. 82, 956 (1999)

    Article  ADS  Google Scholar 

  40. S.R. Challa, D.S. Sholl, J.K. Johnson, Phys. Rev. B 63, 245419 (2001)

    Article  ADS  Google Scholar 

  41. S.R. Challa, D.S. Sholl, J.K. Johnson, J. Chem. Phys. 116, 814 (2002)

    Article  ADS  Google Scholar 

  42. J.J.M. Beenakker, V.D. Borman, S.Y. Krylov, Chem. Phys. Lett. 232, 379 (1995)

    Article  ADS  Google Scholar 

  43. T. Lu, E.M. Goldfield, S.K. Gray, J. Phys. Chem. B 2003, 12989 (2003)

    Article  Google Scholar 

  44. G. Garberoglio, A.I. Skoulidas, J.K. Johnson, J. Phys. Chem. B 109, 13094 (2005)

    Article  Google Scholar 

  45. T. Lu, E.M. Goldfield, S.K. Gray, J. Phys. Chem. B 110, 1742 (2006)

    Article  Google Scholar 

  46. P. Kowalczyk, P.A. Gauden, A.P. Terzyk, J. Phys. Chem. B 112, 8275 (2008)

    Article  Google Scholar 

  47. P. Kowalczyk, P.A. Gauden, A.P. Terzyk, S. Furmaniak, J. Phys., Condens. Matter 21, 144210 (2009)

    Article  ADS  Google Scholar 

  48. G. Garberoglio, Chem. Phys. Lett. 467, 270 (2009)

    Article  ADS  Google Scholar 

  49. X.-Z. Chu, Y.-P. Zhou, Y.-Z. Zhang, W. Su, Y. Sun, L. Zhou, J. Phys. Chem. B 110, 22596 (2006)

    Article  Google Scholar 

  50. Y. Hattori, H. Tanaka, F. Okino, H. Touhara, Y. Nakahigashi, S. Utsumi, H. Kanoh, K. Kaneko, J. Phys. Chem. B 110, 9764 (2006)

    Article  Google Scholar 

  51. X. Zhao, S. Villar-Rodil, A.J. Fletcher, K.M. Thomas, J. Phys. Chem. B 110, 9947 (2006)

    Article  Google Scholar 

  52. B. Chen, X. Zhao, A. Putkham, K. Hong, E.B. Lobkovsky, E.J. Hurtado, A.J. Fletcher, K.M. Thomas, J. Am. Chem. Soc. 130, 6411 (2008)

    Article  Google Scholar 

  53. S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004)

    Article  Google Scholar 

  54. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Science 300, 1127 (2003)

    Article  ADS  Google Scholar 

  55. L. Pan, M.B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J.K. Johnson, J. Am. Chem. Soc. 126, 1308 (2004)

    Article  Google Scholar 

  56. X. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, D. Bradshaw, M.J. Rosseinsky, Science 306, 1012 (2004)

    Article  ADS  Google Scholar 

  57. G. Garberoglio, J. Phys. Chem. 128, 134109 (2008)

    Article  Google Scholar 

  58. J.W. Richardson Jr., J.P. Pluth, J.V. Smith, Acta Cryst. C 43, 1469 (1987)

    Article  Google Scholar 

  59. T. Maris, T.J.H. Vlugt, B. Smit, J. Phys. Chem. B 102, 7183 (1998)

    Article  Google Scholar 

  60. H.L. Tepper, J.P. Hoogenboom, N.F.A. van der Vegt, W.J. Briels, J. Chem. Phys. 110, 11511 (1999)

    Article  ADS  Google Scholar 

  61. H. Tanaka, M. El-Merraoui, T. Kodaira, K. Kaneko, Chem. Phys. Lett. 351, 417 (2002)

    Article  ADS  Google Scholar 

  62. J.P. Fox, V. Rooy, S.P. Bates, Microporous Mesoporous Mater. 69, 9 (2004)

    Article  Google Scholar 

  63. H. Tanaka, H. Kanoh, M. El-Merraoui, W.A. Steele, M. Yudasaka, S. Iijima, K. Kaneko, J. Phys. Chem. B 108, 17457 (2004)

    Article  Google Scholar 

  64. H. Tanaka, J. Fan, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko, Mol. Simul. 31, 465 (2005)

    Article  Google Scholar 

  65. V. Buch, J. Chem. Phys. 100, 7610 (1994)

    Article  ADS  Google Scholar 

  66. A.V. Kiselve, A.A. Lopatkin, A.A. Shulga, Zeolite 5, 261 (1985)

    Article  Google Scholar 

  67. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  68. A.L. Myers, J.M. Prausnitz, AIChE J. 11, 121 (1965)

    Article  Google Scholar 

  69. T. Takaishi, Y. Sensui, Trans. Faraday Soc. 53, 2503 (1963)

    Article  Google Scholar 

  70. M. El-Merraoui, M. Aoshima, K. Kaneko, Langmuir 16, 4300 (2000)

    Article  Google Scholar 

  71. K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Carbon 30, 1075 (1992)

    Article  Google Scholar 

  72. E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical properties of fluid systems, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, ed. by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg, 1998). http://webbook.nist.gov

    Google Scholar 

  73. H.K. Rae, in Separation of Hydrogen Isotopes, ed. by H.K. Rae (Am. Chem. Soc., Washington, 1978)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Kaneko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, H., Noguchi, D., Yuzawa, A. et al. Quantum Effects on Hydrogen Isotopes Adsorption in Nanopores. J Low Temp Phys 157, 352–373 (2009). https://doi.org/10.1007/s10909-009-9917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-9917-8

Keywords

Navigation