Skip to main content
Log in

Using a cw 465 nm Laser to Probe Metastable He2 Molecules

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A cw 465 nm laser has been built for sensitive detection of helium metastable molecules by resonant absorption on the \(a^{3}\Sigma _{u}^{+}(v=0)-e^{3}\Pi_{g}(v=0)\) transition band. The frequency-mixing radiation is obtained from commercial laser diodes in a periodically-poled KTP non-linear crystal. The 1.3-nm tuning range includes the main rotational lines of 3He2, 4He2, and 3He-4He dimers. Measurements of absolute molecular densities down to a few 109 cm−3 are reported in low pressure (1–400 mbar) room temperature He gas excited by a weak rf discharge. Unsophisticated detection techniques provide signals with good signal-to-noise ratios thanks to the narrow absorption linewidths (a few GHz, due to Doppler and moderate collisional broadenings) in the fully resolved spectrum. Prospects for use or upgrade of this blue laser to probe the broadened and shifted molecular lines in condensed He are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.N. McKinsey et al., Phys. Rev. A 59, 200 (1999)

    Article  ADS  Google Scholar 

  2. D.W. Tokaryk et al., J. Chem. Phys. 103, 10439 (1995)

    Article  ADS  Google Scholar 

  3. A.V. Benderskii et al., J. Chem. Phys. 110, 1542 (1999)

    Article  ADS  Google Scholar 

  4. J.C. Hill et al., Phys. Rev. Lett. 26, 1213 (1971)

    Article  ADS  Google Scholar 

  5. F.J. Soley, W.A. Fitzsimmons, Phys. Rev. Lett. 32, 988 (1974)

    Article  ADS  Google Scholar 

  6. S.G. Kafanov et al., J. Exp. Theor. Phys. 91, 991 (2000)

    Article  ADS  Google Scholar 

  7. J. Eloranta et al., J. Chem. Phys. 116, 4039 (2002)

    Article  ADS  Google Scholar 

  8. A.V. Benderskii et al., J. Chem. Phys. 117, 1201 (2002)

    Article  ADS  Google Scholar 

  9. W. Guo et al., Phys. Rev. Lett. 102, 235301 (2009)

    Article  ADS  Google Scholar 

  10. R.L. Brooks et al., J. Chem. Phys. 91, 7408 (1989)

    Article  ADS  Google Scholar 

  11. W.G. Rellergert et al., Phys. Rev. Lett. 100, 025301 (2008)

    Article  ADS  Google Scholar 

  12. B. Glowacz, G. Tastevin, P.-J. Nacher, T. Dohnalik, in preparation

  13. R. Le Targat et al., Opt. Commun. 247, 471 (2005)

    Article  ADS  Google Scholar 

  14. W.P. Risk, Proc. SPIE Int. Soc. Opt. Eng. 2700, 78 (1996)

    ADS  Google Scholar 

  15. E. Courtade et al., Eur. Phys. J. D 21, 25 (2002)

    Article  ADS  Google Scholar 

  16. M.W. Millard et al., Plasma Sources Sci. Technol. 7, 389 (1998)

    Article  ADS  Google Scholar 

  17. S. Neeser et al., Z. Phys. D 31, 61 (1994)

    Article  ADS  Google Scholar 

  18. G.H. Dieke, E. Sant Robinson, Phys. Rev. 80, 1 (1950)

    Article  ADS  Google Scholar 

  19. C.M. Brown, M.L. Ginter, J. Mol. Spectrosc. 5, 302 (1971)

    Article  ADS  Google Scholar 

  20. A.V. Phelps, Phys. Rev. 99, 1307 (1955)

    Article  ADS  Google Scholar 

  21. D. Vrinceanu, H.R. Sadeghpour, Phys. Rev. A 65, 062712 (2002)

    Article  ADS  Google Scholar 

  22. R.G. Batchko et al., Opt. Lett. 24, 1293 (1999)

    Article  ADS  Google Scholar 

  23. S. Johansson et al., Opt. Express 12, 4935 (2004)

    Article  ADS  Google Scholar 

  24. W.P. Risk, W. Lenth, Appl. Phys. Lett. 54, 789 (1989)

    Article  ADS  Google Scholar 

  25. H. Sakata et al., Appl. Opt. 43, 4922 (2004)

    Article  ADS  Google Scholar 

  26. G. Myers, A.J. Cunningham, J. Chem. Phys. 67, 1942 (1977)

    Article  ADS  Google Scholar 

  27. S. Takao et al., J. Chem. Phys. 73, 148 (1980)

    Article  ADS  Google Scholar 

  28. F. Emmert et al., J. Phys. D, Appl. Phys. 21, 667 (1988)

    Article  ADS  Google Scholar 

  29. R. Nakata et al., Jpn. J. Appl. Phys. 16, 883 (1977)

    Article  ADS  Google Scholar 

  30. C.B. Collins, B.W. Johnson, J. Chem. Phys. 57, 5317 (1972)

    Article  ADS  Google Scholar 

  31. K. Kimura et al., Phys. Lett. A 133, 91 (1988)

    Article  ADS  Google Scholar 

  32. Y. Noma et al., Appl. Phys. Lett. 93, 101503 (2008)

    Article  ADS  Google Scholar 

  33. W.S. Dennis et al., Phys. Rev. Lett. 23, 1083 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  34. R.L. Brooks, J.L. Hunt, J. Chem. Phys. 88, 7267 (1988)

    Article  ADS  Google Scholar 

  35. K. von Haeften et al., Phys. Rev. Lett. 88, 233401 (2002)

    Article  ADS  Google Scholar 

  36. S. Yurgenson et al., Eur. Phys. J. D 9, 153 (1999)

    Article  ADS  Google Scholar 

  37. C.-C. Hu et al., Physica B 284–288, 107 (2000)

    Article  Google Scholar 

  38. Z.-L. Li et al., IEEE Trans. Dielectr. Electr. Insul. 16, 742 (2009)

    Article  ADS  Google Scholar 

  39. Z.-L. Li et al., Eur. Phys. J. Appl. Phys. 47, 22821 (2009)

    Article  Google Scholar 

  40. Z.-L. Li, PhD thesis. University J. Fourier, Grenoble (2008). http://tel.archives-ouvertes.fr/tel-00325797/fr/ (in French)

  41. D.N. McKinsey et al., Phys. Rev. Lett. 95, 111101 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tastevin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tastevin, G., Glowacz, B. & Nacher, PJ. Using a cw 465 nm Laser to Probe Metastable He2 Molecules. J Low Temp Phys 158, 339–345 (2010). https://doi.org/10.1007/s10909-009-0050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-0050-5

PACS

Navigation