Skip to main content
Log in

Nonextensive Entropy of Quantum Liquid in Fractal Dimension Space

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

There are several approaches to describe the behavior of superfluid helium-4. For example, two-fluid model, the microscopic description based on the Gross-Pitaevskii equation and one-fluid theory in the framework of extended thermodynamics. Recently the observable peculiarities of quantum liquids behavior in the confined geometries (nanopores, aerogels, etc.) have caused the interest to the correct description of quantum liquids at nanoscale. The fractal geometry and the effects of huge inner surface area should be taken into account to describe dynamics and thermodynamics of liquid helium-4 inside nanoporous media. In the present paper we propose a two-fluid hydrodynamic model in fractal dimension space on the basis of a nonextensive entropy and energy approach. In the framework of this model the coupling between temperature and pressure oscillations (“sound modes conversion”) due to fractal geometry is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.K.S. Wong, P.A. Crowell, H.A. Cho, M.H.W. Chan, Phys. Rev. Lett. 65, 2410 (1990)

    Article  ADS  Google Scholar 

  2. K. Matsumoto, H. Tsuboya, K. Yoshino, S. Abe, H. Suzuki, D. Tayurskii, J. Low Temp. Phys. 148, 615 (2007)

    Article  ADS  Google Scholar 

  3. C. Vasquez, R. Paredes, Condens. Mater. Phys. 9, 305–317 (2006)

    Google Scholar 

  4. R.T. Azuah, H.R. Glyde, R. Schrem, N. Mulders, J. Low Temp. Phys. 130, 557 (2003)

    Article  Google Scholar 

  5. N. Wada, T. Matsushita, M. Hieda, R. Toda, J. Low Temp. Phys. 157, 324 (2009)

    Article  Google Scholar 

  6. I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Addison–Wesley, Redwood City, 1988)

    Google Scholar 

  7. D. Tilley, J. Tilley, Superfluidity and Superconductivity, 3rd edn. (IOP Publishing, London, 1990)

    Google Scholar 

  8. S.J. Putterman, Superfluid Hydrodynamics (North-Holland, Amsterdam, 1974)

    Google Scholar 

  9. M.J. McKenna, T. Slawecki, J.D. Maynard, Phys. Rev. Lett. 66, 1878 (1991)

    Article  ADS  Google Scholar 

  10. P. Brusov, J.M. Parpia, P. Brusov, G. Lawes, Phys. Rev. B 63, 140507 (2001)

    Article  ADS  Google Scholar 

  11. P. Brusov, P. Brusov, G. Lawes, J. Parpia, C. Lee, A. Matsubara, O. Ishikawa, Physica A 329–333, 333 (2004)

    Google Scholar 

  12. M. Nishikawa, K. Yoshino, S. Abe, H. Suzuki, K. Matsumoto, D. Tayurskii, K. Tajiri, J. Phys. Chem. Solids 66, 1506 (2005)

    Article  ADS  Google Scholar 

  13. J. Porto, J.M. Parpia, Phys. Rev. B 59, 14583 (1999)

    Article  ADS  Google Scholar 

  14. E. Feder, Fractals (Springer, Berlin, 2007)

    Google Scholar 

  15. M. Gell-Mann, C. Tsallis (eds.), Non-extensive Entropy—Interdisciplinary Applications (Oxford University Press, London, 2004)

    Google Scholar 

  16. A.S. Parvan, T.S. Biro, eprint arXiv:cond-mat/0607190

  17. C. Tsallis, Braz. J. Phys. 39, 337 (2008)

    Google Scholar 

  18. V. Badescu, Adv. Complex Syst. 11, 43 (2008)

    Article  MATH  Google Scholar 

  19. Q.A. Wang, L. Nivanen, A. Le Mehaute, M.J. Pezeril, Physica A 35, 7003–7007 (2002)

    MATH  Google Scholar 

  20. S. Abe, Phys. Rev. E 63, 061105 (2001)

    Article  ADS  Google Scholar 

  21. S. Abe, S. Martinez, F. Pennini, A. Plastino, Phys. Lett. A 281, 126–130 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. D. Tayurskii, Y. Lysogorskii, D. Zvezdov, J. Phys., Conf. Ser. 150, 032110 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Tayurskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tayurskii, D.A., Lysogorskii, Y.V. Nonextensive Entropy of Quantum Liquid in Fractal Dimension Space. J Low Temp Phys 158, 237–243 (2010). https://doi.org/10.1007/s10909-009-0035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-0035-4

Keywords

PACS

Navigation