Skip to main content
Log in

Magnetic Resonance Studies of Cold Atomic Hydrogen Gas

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present magnetic resonance studies of two-dimensional atomic hydrogen gas (H) in 4.6 T field at temperatures 70–100 mK i.e. well in the quantum gas or cold collision regime. Electron spin resonance at 128 GHz and nuclear magnetic resonance at 910 MHz were used to detect and manipulate populations of the hyperfine manifold of the electronic ground state. Using a coherent two-photon excitation we demonstrated effects of electromagnetically induced transparency and absorption as well as coherent population trapping in the 2D H gas. We performed a measurement of the magnetic resonance line shifts associated with exchange and dipolar interactions. The cold collision (clock) shift measured for the 2D case is two orders of magnitude smaller than predicted by the mean field theory and is of the same order as the internal dipolar field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Gibble, B.J. Verhaar, Phys. Rev. A 52, 3370 (1995), and references therein

    Article  ADS  Google Scholar 

  2. T.C. Killian, et al., Phys. Rev. Lett. 81, 3807 (1998)

    Article  ADS  Google Scholar 

  3. D. Fried, et al., Phys. Rev. Lett. 81, 3811 (1998)

    Article  ADS  Google Scholar 

  4. C. Lhuillier, F. Laloë, J. Phys. (Paris) 43, 197 (1982)

    Google Scholar 

  5. B.R. Johnson, et al., Phys. Rev. Lett. 52, 1508 (1984)

    Article  ADS  Google Scholar 

  6. M. Öktel, L. Levitov, Phys. Rev. Lett. 83, 6 (1999)

    Article  ADS  Google Scholar 

  7. C.J. Pethick, H.T.C. Stoof, Phys. Rev. A 64, 013618 (2001)

    Article  ADS  Google Scholar 

  8. J.E. Williams, et al., Phys. Rev. Lett. 88, 230405 (2002)

    Article  ADS  Google Scholar 

  9. M. Öktel, et al., Phys. Rev. A 65, 033617 (2002)

    Article  ADS  Google Scholar 

  10. D. Harber, et al., Phys. Rev. A 66, 053616 (2002)

    Article  ADS  Google Scholar 

  11. M. Zwierlein, et al., Phys. Rev. Lett. 91, 250404 (2003)

    Article  ADS  Google Scholar 

  12. I.F. Silvera, J.T.M. Walraven, in Prog. Low Temp. Phys., vol. X, ed. by D.F. Brewer (North-Holland, Amsterdam, 1986)

    Google Scholar 

  13. T. Tommila, et al., Phys. Rev. B 36, 6837 (1987)

    Article  ADS  Google Scholar 

  14. Y. Kagan, et al., JETP Lett. 35, 477 (1982)

    ADS  Google Scholar 

  15. D.S. Petrov, et al., J. Phys. IV 116 (2004)

  16. J. Järvinen, et al., Phys. Rev. A 72, 052713 (2005)

    Article  ADS  Google Scholar 

  17. I. Shinkoda, W.N. Hardy, J. Low Temp. Phys. 85, 99 (1991)

    Article  ADS  Google Scholar 

  18. S. Vasilyev, et al., Phys. Rev. Lett. 89, 153002 (2002)

    Article  ADS  Google Scholar 

  19. P. Zitzewitz, N. Ramsey, Phys. Rev. A 3, 51 (1971)

    Article  ADS  Google Scholar 

  20. J. Ahokas, J. Järvinen, S. Vasiliev, Phys. Rev. Lett. 98, 043004 (2007)

    Article  ADS  Google Scholar 

  21. S. Vasilyev, et al., Rev. Sci. Instrum. 75, 94 (2004)

    Article  ADS  Google Scholar 

  22. S.A. Vasilyev, et al., Phys. Rev. A 69, 023610 (2004)

    Article  ADS  Google Scholar 

  23. A.I. Safonov, et al., Phys. Rev. Lett. 81, 4545 (1998)

    Article  ADS  Google Scholar 

  24. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1997), p. 222

  25. L. Pollack, S. Buchman, T.J. Greytak, Phys. Rev. B 45, 2993 (1992)

    Article  ADS  Google Scholar 

  26. L. Pollack, et al., Phys. Rev. B 34, 461 (1986)

    Article  ADS  Google Scholar 

  27. M. Morrow, et al., Phys. Rev. Lett. 47, 455 (1981)

    Article  ADS  Google Scholar 

  28. S. Sen, S. Chakraborty, A.S. Ghosh, Europhys. Lett. 76, 582 (2006)

    Article  ADS  Google Scholar 

  29. A. Hershcovitch, Phys. Rev. Lett. 63, 750 (1989)

    Article  ADS  Google Scholar 

  30. B.J. Verhaar, et al., Phys. Rev. A 35, 3825 (1987)

    Article  ADS  Google Scholar 

  31. J.M.V.A. Koelman, et al., Phys. Rev. A 38, 3535 (1988)

    Article  ADS  Google Scholar 

  32. M.E. Hayden, W.N. Hardy, Phys. Rev. Lett. 76, 2041 (1996)

    Article  ADS  Google Scholar 

  33. M.E. Hayden, W.N. Hardy, Phys. Rev. Lett. 76, 2041 (1996)

    Article  ADS  Google Scholar 

  34. S. Kokkelmans, B. Verhaar, Phys. Rev. A 56, 4038 (1997)

    Article  ADS  Google Scholar 

  35. A. Safonov, et al., Phys. Rev. Lett. 86, 3356 (2001)

    Article  ADS  Google Scholar 

  36. B.W. Statt, et al., J. Low Temp. Phys. 61, 471 (1985)

    Article  ADS  Google Scholar 

  37. S.A. Vasilyev, et al., Appl. Magn. Res. 3, 1061 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vasiliev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahokas, J., Järvinen, J. & Vasiliev, S. Magnetic Resonance Studies of Cold Atomic Hydrogen Gas. J Low Temp Phys 150, 577–586 (2008). https://doi.org/10.1007/s10909-007-9602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9602-8

Keywords

PACS

Navigation