Skip to main content
Log in

Is a Gas of Strongly Interacting Atomic Fermions a Nearly Perfect Fluid?

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We use all-optical methods to produce a highly-degenerate Fermi gas of spin-1/2 6Li atoms. A magnetic field tunes the gas near a collisional (Feshbach) resonance, producing strong interactions between spin-up and spin-down atoms. We have measured properties of a breathing mode over a wide range of temperatures. As the temperature is increased from below the superfluid transition to above, the frequency of the mode is always close to the hydrodynamic value, while the damping rate increases. A complete explanation of both the frequency and the damping rate in the normal collisional regime has not been achieved. Our measurements of the damping rate as a function of the energy of the gas are used to estimate an upper bound on the viscosity. Using our new measurements of the entropy of the gas, we estimate the ratio of the shear viscosity to the entropy density and compare the result with a recent string theory conjecture for the minimum viscosity of a perfect quantum fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. O’Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade, J.E. Thomas, Science 298, 2179 (2002)

    Article  ADS  Google Scholar 

  2. J.E. Thomas, M.E. Gehm, Am. Sci. 92, 238 (2004)

    Article  Google Scholar 

  3. H. Heiselberg, Phys. Rev. A 63, 043606 (2001)

    Article  ADS  Google Scholar 

  4. G.A. Baker Jr., Phys. Rev. C 60, 054311 (1999)

    Article  ADS  Google Scholar 

  5. J. Carlson, S.-Y. Chang, V.R. Pandharipande, K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003)

    Article  ADS  Google Scholar 

  6. P.F. Kolb, U. Heinz, Quark Gluon Plasma 3 (World Scientific, 2003), p. 634

  7. Q. Chen, J. Stajic, S. Tan, K. Levin, Phys. Rep. 412, 1 (2005)

    Article  ADS  Google Scholar 

  8. P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    Article  ADS  Google Scholar 

  9. J. Kinast, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 94, 170404 (2005)

    Article  ADS  Google Scholar 

  10. L. Luo, B. Clancy, J. Joseph, J. Kinast, J.E. Thomas, Phys. Rev. Lett. 98, 080402 (2007)

    Article  ADS  Google Scholar 

  11. M. Bartenstein et al., Phys. Rev. Lett. 92, 120401 (2004)

    Article  ADS  Google Scholar 

  12. A. Altmeyer et al., Phys. Rev. Lett. 98, 040401 (2007)

    Article  ADS  Google Scholar 

  13. J. Joseph et al., Phys. Rev. Lett. 98, 170401 (2007)

    Article  ADS  Google Scholar 

  14. J. Kinast et al., Science 307, 1296 (2005)

    Article  ADS  Google Scholar 

  15. M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311, 492 (2006)

    Article  ADS  Google Scholar 

  16. G.B. Partridge, W. Li, R.I. Kamar, Y. Liao, R.G. Hulet, Science 311, 503 (2006)

    Article  ADS  Google Scholar 

  17. M. Houbiers et al., Phys. Rev. A 56, 4864 (1997)

    Article  ADS  Google Scholar 

  18. M. Houbiers, H.T.C. Stoof, W.I. McAlexander, R.G. Hulet, Phys. Rev. A 57, R1497 (1998)

    Article  ADS  Google Scholar 

  19. J. Kinast, S.L. Hemmer, M.E. Gehm, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 92, 150402 (2004)

    Article  ADS  Google Scholar 

  20. M. Bartenstein et al., Phys. Rev. Lett. 92, 203201 (2004)

    Article  ADS  Google Scholar 

  21. J. Kinast, A. Turlapov, J.E. Thomas, Phys. Rev. A 70, 051401(R) (2004)

    Article  ADS  Google Scholar 

  22. M. Zwierlein, J. Abo-Shaeer, A. Schirotzek, C. Schunck, W. Ketterle, Nature 435, 1047 (2005)

    Article  ADS  Google Scholar 

  23. C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  24. M.W. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004)

    Article  ADS  Google Scholar 

  25. C. Chin et al., Science 305, 1128 (2004)

    Article  ADS  Google Scholar 

  26. M. Greiner, C.A. Regal, D.S. Jin, Phys. Rev. Lett. 94, 070403 (2005)

    Article  ADS  Google Scholar 

  27. G.B. Partridge, K.E. Strecker, R.I. Kamar, M.W. Jack, R.G. Hulet, Phys. Rev. Lett. 95, 020404 (2005)

    Article  ADS  Google Scholar 

  28. M.E. Gehm, S.L. Hemmer, S.R. Granade, K.M. O’Hara, J.E. Thomas, Phys. Rev. A 68, 011401(R) (2003)

    ADS  Google Scholar 

  29. T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004)

    Article  ADS  Google Scholar 

  30. H. Hu, P.D. Drummond, X.-J. Liu, Nat. Phys. 3, 469 (2007)

    Article  Google Scholar 

  31. T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003)

    Article  ADS  Google Scholar 

  32. C.A. Regal, M. Greiner, S. Giorgini, M. Holland, D.S. Jin, Phys. Rev. Lett. 95, 250404 (2005)

    Article  ADS  Google Scholar 

  33. J.E. Thomas, A. Turlapov, J. Kinast, Phys. Rev. Lett. 95, 120402 (2005)

    Article  ADS  Google Scholar 

  34. P. Massignan, G.M. Bruun, H. Smith, Phys. Rev. A 71, 033607 (2005)

    Article  ADS  Google Scholar 

  35. G.M. Bruun, H. Smith, Phys. Rev. A 75, 043612 (2007)

    Article  ADS  Google Scholar 

  36. T. Bourdel et al., Phys. Rev. Lett. 93, 050401 (2004)

    Article  ADS  Google Scholar 

  37. M. Bartenstein et al., Phys. Rev. Lett. 94, 103201 (2005)

    Article  ADS  Google Scholar 

  38. M.W. Zwierlein, C.H. Schunck, A. Schirotzek, W. Ketterle, Nature 442, 54 (2006)

    Article  ADS  Google Scholar 

  39. Q. Chen, C.A. Regal, D.S. Jin, K. Levin, Phys. Rev. A 74, 011601(R) (2005)

    ADS  Google Scholar 

  40. Q. Chen, J. Stajic, K. Levin, Phys. Rev. Lett. 95, 260405 (2005)

    Article  ADS  Google Scholar 

  41. J. Stajic, Q. Chen, K. Levin, Phys. Rev. Lett. 94, 060401 (2005)

    Article  ADS  Google Scholar 

  42. C.H. Schunck, Y. Shin, A. Schirotzek, M.W. Zwierlein, W. Ketterle, Science 316, 867 (2007)

    Article  ADS  Google Scholar 

  43. E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004)

    Article  ADS  Google Scholar 

  44. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1975)

    Google Scholar 

  45. T. Schäfer, The shear viscosity to entropy density ratio of trapped fermions in the unitary limit (2007), ArXiv:cond-mat/0701251

  46. S. Bass, Duke University, private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turlapov, A., Kinast, J., Clancy, B. et al. Is a Gas of Strongly Interacting Atomic Fermions a Nearly Perfect Fluid?. J Low Temp Phys 150, 567–576 (2008). https://doi.org/10.1007/s10909-007-9589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9589-1

Keywords

PACS

Navigation