Skip to main content
Log in

‘Fragile Superconductivity’: A Kinetic Glass Transition in the Vortex Matter of the High-temperature Superconductor YBa2 Cu3O7-δ

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Using high-resolution thermal expansion and magnetization measurements, we provide experimental evidence for a kinetic glass transition in the vortex matter of YBa2Cu3O7-δ with some disorder. This transition, which represents the true superconducting transition in a magnetic field, exhibits many of the features of the usual glass transition found in supercooled structural liquids such as window glass. We demonstrate, using both kinetic and thermodynamic criteria, that this vortex matter is the most fragile system known to date, which we argue makes it possible to investigate the behavior very close to the Kauzmann temperature. Vortex matter, we suggest, may be a model system to study glassy behavior in general, which is expected to lead to a better understanding of the strong-fragile behavior in structural glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent review see: P. G. Debenedetti and F. H. Stillinger, Nature (Lond.) 410, 259–267 (2001).

  2. Mydosh J.A. (1993). Spin Glasses: An Experimental introduction. Taylor & Francis, London, DC

    Google Scholar 

  3. Angell C.A.(1991). J. Non-Crystalline Solids 131–133: 13–31

    Article  Google Scholar 

  4. Crabtree G.W., Nelson D.R.(1997). Phys Today 4: 38-45

    Google Scholar 

  5. Safar H., Gammel P.L., Huse D.A., Bishop D.J., Rice J.P., Ginsberg D.M. (1992). Phys. Rev. Lett 69: 824–827

    Article  ADS  Google Scholar 

  6. Welp U., Fendrich J.A., Kwok W.K., Crabtree G.W., Veal B.W. (1996). Phys. Rev. Lett 76: 4809–4812

    Article  ADS  Google Scholar 

  7. Schilling A., Fischer R.A., Phillips N.E., Welp U., Kwok W.K., Crabtree G.W. (1997). Phys. Rev. Lett 78: 4833–4836

    Article  ADS  Google Scholar 

  8. Schilling A., Fischer R.A., Phillips N.E., Welp U., Kwok W.K., Crabtree G.W. (1998). Phys. Rev. B 58: 11157–11160

    Article  ADS  Google Scholar 

  9. Kauzmann W. (1948). Chem. Rev. 43: 219–256

    Article  Google Scholar 

  10. Ito K., Moynihan C.T., Angell A. (1999). Nature (Lond.) 398: 492–494

    Article  ADS  Google Scholar 

  11. Safar H., Gammel P.L., Huse D.A., Bishop D.J. (1993) . Phys. Rev. Lett 70: 3800–3803

    Article  ADS  Google Scholar 

  12. Kwok W.K., Fendrich J., Fleshler S., Welp U., Downey J., Crabtree G.W. (1994). Phys. Rev. Lett 72: 1092–1095

    Article  ADS  Google Scholar 

  13. Bouquet F., Marcenat C., Calemczuk R., Erb A., Roulin M., Junod A., Welp U., Kwok W.K., Crabtree G.W., Phillips N.E., Fisher R.A., Schilling A. (1999). NATO Series E 356: 743

    Google Scholar 

  14. Bouquet F., Marcenat C., Calemczuk R., Welp U., Crabtree G.W., Phillips N.E., Fisher R.A., Schilling A. (2001). Nature (Lond.) 411: 448–451

    Article  ADS  Google Scholar 

  15. Fisher D.S., Fisher M.P.A., Huse D.A. (1991). Phys. Rev. B 43: 130–159

    Article  ADS  Google Scholar 

  16. Reichhardt C., Otterlo A., Zimanyi G.T. (2000). Phys. Rev. Lett 84: 1994–1997

    Article  ADS  Google Scholar 

  17. DeBolt M.A., Easteal A.J., Macedo P.B., Moynihan C.T. (1976). J. Am. Ceram. Soc 59: 16–21

    Article  Google Scholar 

  18. Gugenberger F., Heid R., Meingast C., Adelmann P., Braun M., Wühl H., Haluska M., Kuzmany H.(1992). Phys. Rev. Lett 69: 3774–3777

    Article  ADS  Google Scholar 

  19. Meingast C., Haluska M., Kuzmany H. (1996). J. Non-Crystalline Solids 201: 167–171

    Article  Google Scholar 

  20. Nagel P., Pasler V., Meingast C., Rykov A.I., Tajima S. (2000) . Phys. Rev. Lett 85: 2376–2379

    Article  ADS  Google Scholar 

  21. Scherer G.W. (1990). J. Non-Crystalline Solids 123: 75–89

    Article  Google Scholar 

  22. Ikuta H., Hirota N., Nakayama Y., Kishio K., Kitazawa K. (1993). Phys. Rev. Lett 70: 2166–2169

    Article  ADS  Google Scholar 

  23. Rykov A.I., Tajima S., Kusmartsev F.V. (1997). Phys. Rev. B 55: 8557–8563

    Article  ADS  Google Scholar 

  24. Avraham N. et al. (2001). Nature (Lond.) 411: 451–454

    Article  ADS  Google Scholar 

  25. Roulin M., Junod A., Walker E. (1996). Science 273: 1210–1212

    Article  ADS  Google Scholar 

  26. Tešanovic Z. (1999). Phys. Rev. B 59: 6449–6474

    Article  ADS  Google Scholar 

  27. Nguyen A.K., Sudbø A. (1999). Phys. Rev. B 60: 15307–15331

    Article  ADS  Google Scholar 

  28. Greer A.L. (2000). Nature (Lond.) 404: 134

    Article  Google Scholar 

  29. D.V. Matyushov and C. A. Angell, J. Chem. Phys. 123, 034506 (2005) and references therein.

  30. S.B. Roy et al., cond-mat/0107100 v1 (2001).

  31. Lortz R., Meingast C. (2002). J. Non-Crystalline Solids 307–310: 459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Lortz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lortz, R., Meingast, C., Rykov, A.I. et al. ‘Fragile Superconductivity’: A Kinetic Glass Transition in the Vortex Matter of the High-temperature Superconductor YBa2 Cu3O7-δ . J Low Temp Phys 147, 365–374 (2007). https://doi.org/10.1007/s10909-007-9320-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9320-2

Keywords

Navigation