Skip to main content
Log in

Interpretation of Temperature-Dependent Resistivity of La–Pb–MnO3: Role of Electron–Phonon Interaction

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The present paper deals with the theoretical investigation of temperature-dependent resistivity of the perovskite manganites La0.78Pb0.22MnO3-δ within the framework of the classical electron–phonon model of resistivity, i.e., the Bloch–Gruneisen model. Due to inherent acoustic (low-frequency) phonons (ω ac ) as well as high-frequency optical phonons (ω op ), the contributions to the electron–phonon resistivity have first been estimated. At low temperatures the acoustic phonons of the oxygen-breathing mode yield a relatively larger contribution to the resistivity as compared to the contribution of optical phonons. Furthermore, the nature of phonons changes around T = 215 K exhibiting a crossover from an acoustic to optical phonon regime with elevated temperature. The contribution to resistivity estimated by considering both phonons, i.e., ω ac and ω op , when subtracted from experimental data, infers a T4.5 temperature dependence over most of the temperature range. Deduced T4.5 temperature dependence of ρdiff = [ρexp − {ρ0 + ρe-ph( = ρac + ρop)}] is justified in terms of electron–magnon scattering within the double exchange (DE) process. Within the proposed scheme, the present numerical analysis of temperature dependent resistivity shows similar results as those revealed by experiments

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Salamon M. Jaime (2001) Rev. Mod. Phys 73 583 Occurrence Handle10.1103/RevModPhys.73.583

    Article  Google Scholar 

  2. Zener C. Phys Rev 82, 403 (1951); P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

  3. A. J. Millis, P. B. Littlewood, and B. I. Shrainman, Phys. Rev. Lett. 74, 5144 (1995); A. J. Millis, B. I. Shrainman, and R. Mueller, Phys. Rev. Lett. 75, 175 (1996).

    Google Scholar 

  4. P. Dai J. Zhang H.A. Mook S-H. Liou P.A. Dowben E.W. Plummer (1996) Phys Rev B 54 R3694 Occurrence Handle10.1103/PhysRevB.54.R3694

    Article  Google Scholar 

  5. M. V. Abrashev, V. G. Avanov, M. N. Iliev, R. A. Chakalov, R. I. Chakalova, and C. Thomsen, Phys. Stat. Sol. (b) 215, 631 (1999); M. V. Abrashev, A. P. Litvinchuk, M. N. Iliev, R. L. Meng, V. N. Popov, V. G. Ivanov, R. A. Chakalov, and C. Thomsen, Phys. Rev. B 59, 4146 (1999).

  6. M.N. Iliev M.V. Abrashev H.G. Lee V.N. Popov Y.Y. Sun C. Thomsen R.L. Meng C.W. Chu (1998) Phys. Rev. B 57 2872 Occurrence Handle10.1103/PhysRevB.57.2872

    Article  Google Scholar 

  7. J.W. Lynn R.W. Erwin J.A. Borchers Q. Huang A. Santoro (1996) Phys. Rev. Lett 76 4046 Occurrence Handle10.1103/PhysRevLett.76.4046 Occurrence Handle10061178

    Article  PubMed  Google Scholar 

  8. K. Kubo N. Ohata (1972) J. Phys. Soc. Jpn 33 21 Occurrence Handle10.1143/JPSJ.33.21

    Article  Google Scholar 

  9. A. Urushibara Y. Moritomo T. Arima A. Asamitsu G. Kido Y. Tokura (1995) Phys. Rev. B 51 14103 Occurrence Handle10.1103/PhysRevB.51.14103

    Article  Google Scholar 

  10. M. Jaime P. Lin M.B. Salamon P.D. Han (1998) Phys. Rev. B 58 R5901 Occurrence Handle10.1103/PhysRevB.58.R5901

    Article  Google Scholar 

  11. Zhao Guo-meng V. Smolyaninova W. Prellier H. Keller (2000) Phys. Rev. Lett 84 6086 Occurrence Handle10.1103/PhysRevLett.84.6086 Occurrence Handle10991130

    Article  PubMed  Google Scholar 

  12. Zhao Guo-meng D.J. Kang W. Prellier M. Rajeswari H. Keller T. Venkatesan R.L. Greene (2000) Phys. Rev. B 63 060402(R)

    Google Scholar 

  13. X.J. Chen H.-U. Habermeier C.L. Zhang H. Zhang C.C. Almasan (2003) Phys. Rev. B 67 134405 Occurrence Handle10.1103/PhysRevB.67.134405

    Article  Google Scholar 

  14. E. Granado N.O. Moreno A. García J.A. Sanjurjo C. Rettori I. Torriani S.B. Oseroff J.J. Neumeier K.J. McClellan S-W. Cheong Y. Tokura (1998) Phys Rev. B 58 11435 Occurrence Handle10.1103/PhysRevB.58.11435

    Article  Google Scholar 

  15. D. Varshney K.K. Choudhary R.K. Singh (2002) Supercond. Sci. Technol 15 1119 Occurrence Handle10.1088/0953-2048/15/7/324

    Article  Google Scholar 

  16. M. Born K. Huang (1966) Dynamical Theory of Crystal Lattices Oxford University Press London

    Google Scholar 

  17. G. Grimvall (1980) The Electrons-Phonon Interaction in Metals North-Holland Pub. Com. New York

    Google Scholar 

  18. J. Blasco J. Garcia J.M. Teresa Particlede M.R. Ibarra J. Perez P.A. Algarabel C. Marquina C. Ritter (1997) Phys Rev. B 55 8905 Occurrence Handle10.1103/PhysRevB.55.8905

    Article  Google Scholar 

  19. D. Varshney M.P. Tosi (2000) J. Phys. Chem. Solids 61 683 Occurrence Handle10.1016/S0022-3697(99)00309-1

    Article  Google Scholar 

  20. L. Ghivelder R.S. Freitas R.E. Rapp F.A.B. Chaves M. Gospodinov M.A. Gusmao (2001) J Magn Magn Mater 226–230 845 Occurrence Handle10.1016/S0304-8853(00)01026-X

    Article  Google Scholar 

  21. K.H. Kim J.Y. Gu H.S. Choi G.W. Park T.W. Noh (1996) Phys. Rev. Lett 77 1877 Occurrence Handle10.1103/PhysRevLett.77.1877 Occurrence Handle10063194

    Article  PubMed  Google Scholar 

  22. C.H. Booth F. Bridges G.H. Kwei J.M. Lawrence A.L. Cornelius J.J. Neumeier (1998) Phys. Rev. Lett 80 853 Occurrence Handle10.1103/PhysRevLett.80.853

    Article  Google Scholar 

  23. Lee J.D., Min B.I. Phys Rev B 55, 12454 (1997); Phys. Rev B 55, R14713 (1997).

    Google Scholar 

  24. R.J. Soulen SuffixJr. M.S. Osofsky B. Nadgorny T. Ambrose P. Broussard S.F. Cheng J. Byers C.T. Tanaka J. Nowack J.S. Moodera G. Laprade A. Barry M.D. Coey (1999) J. Appl. Phys 85 4589 Occurrence Handle10.1063/1.370417

    Article  Google Scholar 

  25. J.-H. Park E. Vescovo H.-J. Kim C. Kwon R. Ramesh T. Venkatesan (1998) Nature (London). 392 794 Occurrence Handle10.1038/33883

    Article  Google Scholar 

  26. P. Fulde J. Jensen (1983) Phys. Rev. B. 27 4085 Occurrence Handle10.1103/PhysRevB.27.4085

    Article  Google Scholar 

  27. W.E. Pickett D.J. Singh (1996) Phys. Rev. B 53 1146 Occurrence Handle10.1103/PhysRevB.53.1146

    Article  Google Scholar 

  28. Dinesh Varshney., Kaurav N. (2004). Eur. Phys. J. B. 37: 301 (2004); 40, 129 (2004).

  29. M. Quijada J. Cerne J.R. Simpson H.D. Drew K.H. Ahn A.J. Millis R. Shreekala R. Ramesh M. Rajeswari T. Venkatesan (1998) Phys. Rev. B. 58 16093 Occurrence Handle10.1103/PhysRevB.58.16093

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, D., Kaurav, N. Interpretation of Temperature-Dependent Resistivity of La–Pb–MnO3: Role of Electron–Phonon Interaction. J Low Temp Phys 141, 165–178 (2005). https://doi.org/10.1007/s10909-005-8226-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-8226-0

Keywords

Navigation