Skip to main content
Log in

Thermal Conductivity of Methane-Hydrate

  • Original Article
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The thermal conductivity of the methane hydrate CH 4 (5.75H 2 O) was measured in the interval 2–140 K using the steady-state technique. The thermal conductivity corresponding to a homogeneous substance was calculated from the measured effective thermal conductivity obtained in the experiment. The temperature dependence of the thermal conductivity is typical for the thermal conductivity of amorphous solids. It is shown that after separation of the hydrate into ice and methane, at 240 K, the thermal conductivity of the ice exhibits a dependence typical of heavily deformed fine-grain polycrystal. The reason for the glass-like behavior in the thermal conductivity of clathrate compounds has been discussed. The experimental results can be interpreted within the phenomenological soft-potential model with two fitting parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. J.S. Tse and M.A. White, J. Phys. Chem. 92, 5006 (1988).

    Article  CAS  Google Scholar 

  2. 2. J. Baumert, C. Gutt, V.P. Shpakov, J.S. Tse, M. Krisch, M. Muller, H. Requardt, D.D. Klug, S. Janssen, and W. Press, Phys. Rev. B 68, 17 4301 (2003).

    Article  Google Scholar 

  3. 3. V.F. Sears, B.M. Powell, J.S. Tse, C.I. Ratcliffe, and Y.P. Handa, Physica B 180, 658 (1992).

    Google Scholar 

  4. 4. D. Staykova, Th. Hansen, A.N. Salamatin, and W.F. Kuhs, in: Proc. 4th Int. Conf. on Gas Hydrates, Yokohama, May 19–23, 2002, pp. 537–542.

  5. 5. A.I. Krivchikov, B.Ya. Gorodilov, and O.A. Korolyuk, to be published.

  6. 6. A. Missenard, Conductivite Thermique des Solides, Liuides, Gaz et de Leurs Melanges, Editions Eyrolles, Paris (1965), [in French].

    Google Scholar 

  7. 7. G.N. Dulnev and Yu.P.Zarichnyak, Heat Conductivity of Mixtures and Composite Materials, Energiya, Moscow (1974), [in Russian].

    Google Scholar 

  8. 8. E.Ya. Litovsky and N.A. Puchkelevich, Thermal Properties of Heat-Resistant Materials. Handbook, Metallurgiya, Moscow (1982), [in Russian].

    Google Scholar 

  9. 9. J.G. Cook and D.G. Leaist, Geophys. Res. Lett. 10, 397 (1983).

    CAS  Google Scholar 

  10. 10. D. Davidson, Gas Hydrates as Clathrate Ices, in: Natural Gas Hydrates – Properties, Occurrence and Recovery, J. Cox (ed.), Butterworth, Woburn, MA (1983), pp. 1–16.

    Google Scholar 

  11. 11. Hsing Wang, unpublished.

  12. 12. N. Ahmad and W.A. Phillips, Solid State Commun. 63, 167 (1987).

    Article  CAS  Google Scholar 

  13. 13. G.A. Slack, Phys. Rev. B 22, 3065 (1980).

    Article  CAS  Google Scholar 

  14. 14. J. Klinger and G.J. Rochas, Phys. Chem 87, 4155 1983).

    Article  CAS  Google Scholar 

  15. 15. C. Gutt, B. Asmussen, W. Press, C. Merkl, H. Casalta, J. Greinert, G. Bohrmann, J.S. Tse, and A. Huller, Europhys. Lett. 48, 269 (1999).

    Article  CAS  Google Scholar 

  16. 16. Laura A. Stern, Susan Circone, Stephen H. Kirby, and William B. ***, J. Phys. Chem. B 105, 1756 (2001).

    Article  CAS  Google Scholar 

  17. 17. U. Buchenau, Yu.M. Galperin, V.L. Gurevich, D.A. Parchin, M.A. Ramos, and H.R. Schober, Phys. Rev. B 46, 2798 (1992).

    Article  Google Scholar 

  18. 18. M.A. Ramos and U. Buchenau, Phys. Rev. B 55, 5749 (1997).

    Article  CAS  Google Scholar 

  19. 19. J.S. Tse, V.P. Shpakov, V.V. Murashov, and V.R. Belosludov. J. Chem. Phys. 107, 9271 (1997).

    Article  CAS  Google Scholar 

  20. 20. S. Sasaki, T. Kumazaki, I. Suwa, T. Kume and H. Shimizu. J. Phys. Cond. Matt. 14, 10 445 (2002).

    Article  Google Scholar 

  21. 21. V.F. Petrenko and R.W. Whithworth, Physics of Ice, Oxford University Press (1999).

    Google Scholar 

  22. 22. A.I. Krivchikov, B.Ya. Gorodilov, V.G. Manzhelii, and V.V. Dudkin, Low Temp. Phys. 29, *** (2003).

    Google Scholar 

  23. 23. E. Courtens, M. Foret, B. Hehlen, B. Ruffle, and R. Vacher. J. Phys. Cond. Matt. 15, S 1281 (2003).

    Google Scholar 

  24. 24. J.L. Cohn, G.S.Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1999).

    Article  CAS  Google Scholar 

  25. 25. G.S. Nolas, T.J.R. Weakley, J.L. Cohn, and R. Sharma. Phys. Rev. B 61, 3845 (2000).

    Article  CAS  Google Scholar 

  26. 26. A. Bentien, M. Christensen, J.D. Bryan, A. Sanchez, S. Paschen, F. Steglich, G.D. Stucky, and B.B. Iversen, Phys. Rev. B 69, 04 5107 (2004).

    Article  Google Scholar 

  27. 27. M. Gitterman and V.A. Steinberg, High Temp. Phys. 10, 565 (1972); M. Gitterman, Rev. Mod. Phys. 50, 85 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

PACS numbers: 66.70 +f, 63.20 −e, 63.20 Pw, 63.50 +x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivchikov, A., Gorodilov, B., Korolyuk, O. et al. Thermal Conductivity of Methane-Hydrate. J Low Temp Phys 139, 693–702 (2005). https://doi.org/10.1007/s10909-005-5481-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-5481-z

Keywords

Navigation